Estadística Avanzada y Análisis de Datos


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Estadística Avanzada y Análisis de Datos"

Transcripción

1 1-1 Estadística Avanzada y Análisis de Datos Javier Gorgas y Nicolás Cardiel Curso Máster Interuniversitario de Astrofísica

2 1-2 Introducción En ciencia tenemos que tomar decisiones ( son los datos compatibles con la teoría? cuáles son los parámetros que mejor ajustan? son las dos muestras similares? qué ha fallado, cómo podemos mejorar el experimento?) Para cada medida o parámetro derivado necesitamos una estimación del error que nos diga, en términos de probabilidades, la confianza que tenemos en su valor. La estadística es la herramienta, en la mayoría de los casos, inevitable para tomar las decisiones (el método científico). If your experiment needs statistics, you ought to have done a better experiment (E. Rutherford) En particular, en astrofísica: Nuestras medidas están sujetas a (grandes) errores de medida. Tenemos la manía de observar al límite de las capacidades instrumentales. El método clásico de repetir los experimentos no es aplicable. No podemos diseñar los experimentos (las muestras pueden ser muy pequeñas)

3 1-3 Introducción (II) No podemos evitar la estadística: Cómo asignamos errores a nuestros datos? (o los de otros) Cómo podemos extraer la información máxima de los datos? ( o los tiramos?) Cómo comparamos muestras? (de diferentes objetos o de diferentes autores) Cómo hacer correlación, contrastar hipótesis, ajustar modelos? Qué hacer con las muestras incompletas? ( límites superiores?) NECESITAMOS DECIDIR Nuestros colegas usan estadística. Tenemos que entender lo qué hacen y cómo lo hacen. Curso con un enfoque práctico (recetas) Métodos paramétricos clásicos Métodos no paramétricos Estadística bayesiana

4 Estadística clásica Programa 2. Introducción a la estadística bayesiana 3. Cálculo de errores 4. Regresión lineal 5. Correlación 6. Regresión múltiple 7. Contrastes de hipótesis para una muestra 8. Contrastes de hipótesis para varias muestras 9. Análisis de componentes principales 10. Estimación de parámetros 11. Detección de la señal Surveys 12. Análisis de datos astrofísicos

5 1-5 Introducción Tema 1 Estadística clásica Estadística descriptiva Distribuciones de probabilidad Distribuciones discretas de probabilidad Distribución normal Estimación de parámetros poblacionales Distribuciones muestrales de los estadísticos Estimación por intervalos de confianza Contrastes de hipótesis Métodos no paramétricos

6 Estadística descriptiva 1-6 centralización Media aritmética Mediana M e : Valor central (con los datos ordenados de mayor a menor) Media geométrica Media armónica Moda M o: Valor con mayor frecuencia Media cuadrática dispersión Desviación media Varianza Desviación típica Coeficientes de variación asimetría curtosis Momento de orden r respecto a c

7 Distribuciones de probabilidad 1-7 Función de probabilidad para una variable discreta: Función de distribución: Función de densidad para una variable continua: Función de distribución: media (esperanza matemática) varianza covarianza

8 Distribuciones discretas de probabilidad 1-8 Distribución Binomial Probabilidad de obtener x éxitos en n ensayos (p = probabilidad de éxito en un ensayo) donde Media: Desviación típica: Distribución de Poisson Probabilidad de que se den x sucesos (λ = número medio de sucesos) donde Media: Desviación típica:

9 Distribución normal 1-9 Media: µ Desviación típica: σ Normal tipificada: Teorema del límite central: Si X 1, X 2,, X n son variables aleatorias independientes con medias µ i, desviaciones típicas σ i y distribuciones de probabilidad cualesquiera, y definimos la variables Y = X 1 + X X n, entonces la variable: cuando Ej. la distribución binomial tiende a la distribución normal: Ej. la distribución de Poisson tiende a la distribución normal:

10 Estimación de parámetros poblacionales La estimación se hace a partir de estadísticos (variables aleatorias definidas sobre los valores de la muestra) con funciones de probabilidad conocidas Estimación puntual Estimación por intervalos de confianza 1-10 Método de máxima verosimilitud: Método objetivo para encontrar buenos estimadores puntuales: Función de máxima verosimilitud: probabilidad de obtener la muestra observada dado un valor del parámetro poblacional: El estimador de máxima verosimilitud es el valor de α que hace máximo L Ejemplo: para una distribución normal:

11 Distribuciones muestrales de los estadísticos 1-11 Distribución muestral de la media: Si es la media de una muestra aleatoria de tamaño n que se toma de una población con distribución cualquiera, media µ y varianza σ 2, entonces la variable tipificada: tiende a una normal N(0,1) cuando n tiende a infinito Dsitribución muestral de la diferencia de medias: Si y son las medias muestrales de dos distribuciones (µ 1, σ 1 ) y (µ 2, σ 2 ) entonces: tiende a una normal N(0,1) cuando n 1 y n 2 tienden a infinito Distribución muestral de la varianza: El estadístico t: Distribución muestral de la razón de varianzas: sigue una distribución con n-1 grados de libertad sigue una distribución t de Student con n-1 grados de libertad sigue una distribución F de Fisher con n 1-1 y n 2-1 grados de libertad

12 Estimación por intervalos de confianza 1-12 Ejemplo: media de una población normal nivel de confianza Si la desviación típica es desconocida: Muestras grandes (n > 30) Muestras pequeñas (significado del intervalo de confianza)

13 Intervalos de confianza 1-13

14 Intervalos de confianza 1-14

15 Contrastes de hipótesis 1-15 Formulación de las hipótesis: Hipótesis nula (H 0 ) vs Hipótesis alternativa (H 1 ) Aceptación de la hipótesis nula los datos no están en contra Rechazo de la hipótesis nula los datos indican que es improbable que sea cierta Se utiliza un estadístico de prueba con distribución conocida en el caso de que H_0 sea cierta Ejemplo: media de una población normal α: nivel de significación Contraste bilateral Contrastes unilaterales región crítica región crítica región crítica región de aceptación región de aceptación región de aceptación

16 Contrastes de hipótesis 1-16

17 Contrastes de hipótesis 1-17

18 Contrastes de hipótesis 1-18

19 Métodos no paramétricos 1-19 Métodos parámetricos: muestras aleatorias extraídas de poblaciones con distribución de probabilidad conocida (normal). El problema es determinar los parámetros de la población (ej. µ, σ) Métodos de distribución libre o NO paramétricos: no se supone ninguna distribución de probabilidad. Muchas veces se basan en ordenar los datos en una escala asignando rangos (análisis de rangos). VENTAJAS En general no se conoce la distribución de probabilidad (el teorema del límite central puede no aplicarse). Menos suposiciones sobre los datos. Válidos para muestras muy pequeñas. Sirven para datos no numéricos (variables cualitativas y de rango). Respuestas rápidas con menos cálculos. La conversión a rangos elimina incertidumbres con la escala. A veces no existe la población (no hay parámetros que estimar). DESVENTAJAS No usan toda la información disponible. Al no haber parámetros, es difícil hacer estimaciones cuantitativas. Son algo menos eficientes: (para rechazar la hipótesis nula con el mismo nivel de confianza se necesitan muestras mayores) Eficiencia relativa asintótica: para tomar la decisión con el mismo α (típicamente: ARE entre 0.6 y 0.95) (Ante la duda es más seguro usar métodos no paramétricos)

ÍNDICE CAPITULO UNO CAPITULO DOS. Pág.

ÍNDICE CAPITULO UNO CAPITULO DOS. Pág. ÍNDICE CAPITULO UNO Pág. Concepto de Estadística 1 Objetivo 1 Diferencia entre estadísticas y estadística 1 Uso de la estadística 1 Divisiones de la estadística 1 1. Estadística Descriptiva 1 2. Estadística

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:

Más detalles

Tema 3. 3. Correlación. Correlación. Introducción

Tema 3. 3. Correlación. Correlación. Introducción 3-1 Introducción Tema 3 Correlación Coeficiente de correlación lineal de Pearson Coeficiente de correlación poblacional Contraste paramétrico clásico Transformación de Fisher Correlación bayesiana Test

Más detalles

ESTADISTICA APLICADA: PROGRAMA

ESTADISTICA APLICADA: PROGRAMA Pág. 1 de 5 ESTADISTICA APLICADA: PROGRAMA a) OBJETIVOS Y BLOQUE 1: Teoría de Probabilidades 1.1 Comprender la naturaleza de los experimentos aleatorios y la estructura de los espacios de probabilidades,

Más detalles

Teoría de la decisión Estadística

Teoría de la decisión Estadística Conceptos básicos Unidad 7. Estimación de parámetros. Criterios para la estimación. Mínimos cuadrados. Regresión lineal simple. Ley de correlación. Intervalos de confianza. Distribuciones: t-student y

Más detalles

Introducción a la estadística básica, el diseño de experimentos y la regresión

Introducción a la estadística básica, el diseño de experimentos y la regresión Introducción a la estadística básica, el diseño de experimentos y la regresión Objetivos José Gabriel Palomo Sánchez gabriel.palomo@upm.es E.U.A.T. U.P.M. Julio de 2011 Objetivo general Organizar el estudio

Más detalles

Análisis estadístico básico (I) Magdalena Cladera Munar mcladera@uib.es Departament d Economia Aplicada Universitat de les Illes Balears

Análisis estadístico básico (I) Magdalena Cladera Munar mcladera@uib.es Departament d Economia Aplicada Universitat de les Illes Balears Análisis estadístico básico (I) Magdalena Cladera Munar mcladera@uib.es Departament d Economia Aplicada Universitat de les Illes Balears CONTENIDOS Introducción a la inferencia estadística. Muestreo. Estimación

Más detalles

6. ESTIMACIÓN DE PARÁMETROS

6. ESTIMACIÓN DE PARÁMETROS PROBABILIDAD Y ESTADÍSTICA Sesión 7 6. ESTIMACIÓN DE PARÁMETROS 6.1 Características el estimador 6. Estimación puntual 6..1 Métodos 6..1.1 Máxima verosimilitud 6..1. Momentos 6.3 Intervalo de confianza

Más detalles

CONCEPTOS FUNDAMENTALES

CONCEPTOS FUNDAMENTALES TEMA 8: CONTRASTES DE HIPÓTESIS PARAMÉTRICAS PRIMERA PARTE: Conceptos fundamentales 8.1. Hipótesis estadística. Tipos de hipótesis 8.2. Región crítica y región de aceptación 8.3. Errores tipo I y tipo

Más detalles

INTERVALO DE CONFIANZA PARA LA PROPORCIÓN

INTERVALO DE CONFIANZA PARA LA PROPORCIÓN INTERVALO DE CONFIANZA PARA LA PROPORCIÓN Si deseamos estimar la proporción p con que una determinada característica se da en una población, a partir de la proporción p' observada en una muestra de tamaño

Más detalles

Test de Kolmogorov-Smirnov

Test de Kolmogorov-Smirnov Test de Kolmogorov-Smirnov Georgina Flesia FaMAF 2 de junio, 2011 Test de Kolmogorov-Smirnov El test chi-cuadrado en el caso continuo H 0 : Las v.a. Y 1, Y 2,..., Y n tienen distribución continua F. Particionar

Más detalles

Estadística II Tema 2. Conceptos básicos en el contraste de. Curso 2010/11

Estadística II Tema 2. Conceptos básicos en el contraste de. Curso 2010/11 Estadística II Tema 2. Conceptos básicos en el contraste de hipótesis Curso 2010/11 Tema 2. Conceptos básicos en el contraste de hipótesis Contenidos Definición de contraste e hipótesis estadística. Hipótesis

Más detalles

Problemas resueltos. Temas 10 y 11 11, 9, 12, 17, 8, 11, 9, 4, 5, 9, 14, 9, 17, 24, 19, 10, 17, 17, 8, 23, 8, 6, 14, 16, 6, 7, 15, 20, 14, 15.

Problemas resueltos. Temas 10 y 11 11, 9, 12, 17, 8, 11, 9, 4, 5, 9, 14, 9, 17, 24, 19, 10, 17, 17, 8, 23, 8, 6, 14, 16, 6, 7, 15, 20, 14, 15. Temas 10 y 11. Contrastes paramétricos de hipótesis. 1 Problemas resueltos. Temas 10 y 11 1- las puntuaciones en un test que mide la variable creatividad siguen, en la población general de adolescentes,

Más detalles

Técnicas de validación estadística Bondad de ajuste

Técnicas de validación estadística Bondad de ajuste Técnicas de validación estadística Bondad de ajuste Georgina Flesia FaMAF 28 de mayo, 2013 Pruebas de bondad de ajuste Dado un conjunto de observaciones, de qué distribución provienen o cuál es la distribución

Más detalles

Unidad Temática 5 Estimación de parámetros: medias, varianzas y proporciones

Unidad Temática 5 Estimación de parámetros: medias, varianzas y proporciones Unidad Temática 5 Estimación de parámetros: medias, varianzas y proporciones Responda verdadero o falso. Coloque una letra V a la izquierda del número del ítem si acepta la afirmación enunciada, o una

Más detalles

Tema 11: Intervalos de confianza.

Tema 11: Intervalos de confianza. Tema 11: Intervalos de confianza. Presentación y Objetivos. En este tema se trata la estimación de parámetros por intervalos de confianza. Consiste en aproximar el valor de un parámetro desconocido por

Más detalles

MATEMÁTICA III. Régimen de Cursada: Semestral Caracter: Obligatoria Correlativas: Matemática II Profesor: Beatriz Pintarelli Hs. semanales: 6 hs.

MATEMÁTICA III. Régimen de Cursada: Semestral Caracter: Obligatoria Correlativas: Matemática II Profesor: Beatriz Pintarelli Hs. semanales: 6 hs. MATEMÁTICA III Año 2015 Carrera/ Plan: Licenciatura en Informática Plan 2015-3º año Licenciatura en Sistemas Plan 2015 3º año Licenciatura en Informática Plan 2003-07 / Plan 2012-2º año Licenciatura en

Más detalles

Contenido. Introducción. Introducción. Definiciones. Estadística Descriptiva. Estadística Descriptiva

Contenido. Introducción. Introducción. Definiciones. Estadística Descriptiva. Estadística Descriptiva Contenido Introducción al Diseño de Eperimentos para el Reconocimiento de Patrones Capítulo : Modelos Estadísticos Curso de doctorado impartido por Dr. Quiliano Isaac Moro Dra. Aranzazu Simón Hurtado Marzo

Más detalles

C a r t a D e s c r i p t i v a

C a r t a D e s c r i p t i v a I. Identificadores del Programa: C a r t a D e s c r i p t i v a Programa: Maestría en Matemática Educativa. Depto.: Física y Matemáticas Materia: Métodos Estadísticos Clave: MME10090 No. Créditos: 6 Tipo:

Más detalles

Estadistica II Tema 1. Inferencia sobre una población. Curso 2009/10

Estadistica II Tema 1. Inferencia sobre una población. Curso 2009/10 Estadistica II Tema 1. Inferencia sobre una población Curso 2009/10 Tema 1. Inferencia sobre una población Contenidos Introducción a la inferencia Estimadores puntuales Estimación de la media y la varianza

Más detalles

UNIVERSIDAD DE CIENCIAS EMPRESARIALES Y SOCIALES

UNIVERSIDAD DE CIENCIAS EMPRESARIALES Y SOCIALES UNIVERSIDAD DE CIENCIAS EMPRESARIALES Y SOCIALES Carrera: LICENCIATURA EN COMERCIO EXTERIOR Asignatura: ESTADÍSTICA APLICADA A LOS NEGOCIOS ESTADÍSTICA DE LOS NEGOCIOS Curso: 1º AÑO Año lectivo: 2016 Carga

Más detalles

Econometria. 4. Modelo de Regresión Lineal Simple: Inferencia. Prof. Ma. Isabel Santana

Econometria. 4. Modelo de Regresión Lineal Simple: Inferencia. Prof. Ma. Isabel Santana Econometria 4. Modelo de Regresión Lineal Simple: Inferencia Prof. Ma. Isabel Santana MRLS: Inferencia Hasta ahora nos hemos ocupado solamente de la estimación de los parámetros del modelo de regresión

Más detalles

Técnicas de Inferencia Estadística II. Tema 3. Contrastes de bondad de ajuste

Técnicas de Inferencia Estadística II. Tema 3. Contrastes de bondad de ajuste Técnicas de Inferencia Estadística II Tema 3. Contrastes de bondad de ajuste M. Concepción Ausín Universidad Carlos III de Madrid Grado en Estadística y Empresa Curso 2014/15 Contenidos 1. Introducción

Más detalles

Tema II. Las muestras y la teoría paramétrica

Tema II. Las muestras y la teoría paramétrica 2.1. Muestras y muestreos: - La muestra:. Subconjunto de elementos de la población. Necesidad práctica:. Motivos económicos. Imposibilidad (práctica/teórica) de estudiar TODA la población. Inconveniencia

Más detalles

Técnicas de validación estadística Bondad de ajuste

Técnicas de validación estadística Bondad de ajuste Técnicas de validación estadística Bondad de ajuste Georgina Flesia FaMAF 31 de mayo, 2011 Pruebas de bondad de ajuste Dado un conjunto de observaciones, de qué distribución provienen o cuál es la distribución

Más detalles

1. IDENTIFICACIÓN DE LA ASIGNATURA

1. IDENTIFICACIÓN DE LA ASIGNATURA UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE ADMINISTRACION Y ECONOMIA DEPARTAMENTO DE CONTABILIDAD Y AUDITORIA PROGRAMA DE ESTUDIO ESTADÍSTICA APLICADA II 1. IDENTIFICACIÓN DE LA ASIGNATURA 2. OBJETIVOS

Más detalles

TEMA 4: CONTRASTES DE HIPÓTESIS. CONCEPTOS BÁSICOS

TEMA 4: CONTRASTES DE HIPÓTESIS. CONCEPTOS BÁSICOS ASIGNATURA: ESTADÍSTICA II (Grado ADE,MIM,FBS) TEMA 4: CONTRASTES DE HIPÓTESIS. CONCEPTOS BÁSICOS 4.1. Hipótesis estadística. Tipos de hipótesis 4.2. Región crítica y región de aceptación 4.3. Errores

Más detalles

Tema 5. Muestreo y distribuciones muestrales

Tema 5. Muestreo y distribuciones muestrales Tema 5. Muestreo y distribuciones muestrales Contenidos Muestreo y muestras aleatorias simples La distribución de la media en el muestreo La distribución de la varianza muestral Lecturas recomendadas:

Más detalles

Estadística Inferencial. Sesión 5. Prueba de hipótesis

Estadística Inferencial. Sesión 5. Prueba de hipótesis Estadística Inferencial. Sesión 5. Prueba de hipótesis Contextualización. En la práctica, es frecuente tener que tomar decisiones acerca de poblaciones con base en información de muestreo. Tales decisiones

Más detalles

Valor absoluto de un número real. Potencias de exponente racional. Logaritmos. Logaritmos decimales y neperianos. Propiedades y operaciones.

Valor absoluto de un número real. Potencias de exponente racional. Logaritmos. Logaritmos decimales y neperianos. Propiedades y operaciones. Otras páginas Matemásicas ccss 5º MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I ARITMÉTICA Y ÁLGEBRA Los números reales Números racionales. Números irracionales. Los números y e. Los números reales.

Más detalles

4. Medidas de tendencia central

4. Medidas de tendencia central 4. Medidas de tendencia central A veces es conveniente reducir la información obtenida a un solo valor o a un número pequeño de valores, las denominadas medidas de tendencia central. Sea X una variable

Más detalles

PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA DE SISTEMAS

PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA DE SISTEMAS 1 1. DATOS INFORMATIVOS PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA DE SISTEMAS MATERIA: ESTADISTICA CODIGO: 11715 CARRERA: INGENIERIA DE SISTEMAS NIVEL: TERCERO

Más detalles

Tema 2. Contraste de hipótesis en una población

Tema 2. Contraste de hipótesis en una población Tema 2. Contraste de hipótesis en una población Contenidos Introducción, las hipótesis nula y alternativa El procedimiento de contraste de hipótesis Errores de Tipo I y Tipo II, potencia del contraste

Más detalles

Carrera: SCC - 0424 4-2-10. Participantes. Representantes de la academia de sistemas y computación de los Institutos Tecnológicos.

Carrera: SCC - 0424 4-2-10. Participantes. Representantes de la academia de sistemas y computación de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Probabilidad y estadística Ingeniería en Sistemas Computacionales SCC - 0424 4-2-10

Más detalles

Contenidos Programáticos. PROGRAMA: VARIAS (Ingeniería, Administración, edufísica, M. veterinaria )

Contenidos Programáticos. PROGRAMA: VARIAS (Ingeniería, Administración, edufísica, M. veterinaria ) Página 1 de 4 FACULTAD: CIENCIAS BÁSICAS PROGRAMA: VARIAS (Ingeniería, Administración, edufísica, M. veterinaria ) DEPARTAMENTO DE: MATEMÁTICA CURSO : ESTADISTICA I CÓDIGO: 157011 ÁREA: MATEMÁTICA REQUISITOS:

Más detalles

DISTRIBUCIONES DE PROBABILIDAD (RESUMEN)

DISTRIBUCIONES DE PROBABILIDAD (RESUMEN) DISTRIBUCIONES DE PROBABILIDAD (RESUMEN) VARIABLE ALEATORIA: un experimento produce observaciones numéricas que varían de muestra a muestra. Una VARIABLE ALEATORIA se define como una función con valores

Más detalles

Pruebas de Bondad de Ajuste

Pruebas de Bondad de Ajuste 1 Facultad de Ingeniería IMERL PROBABILIDAD Y ESTADÍSTICA Curso 2008 Pruebas de Bondad de Ajuste En esta sección estudiaremos el problema de ajuste a una distribución. Dada una muestra X 1, X 2,, X n de

Más detalles

ANÁLISIS CUANTITATIVO DE DATOS EN CIENCIAS SOCIALES CON EL SPSS (I) Tablas de contingencia y pruebas de asociación

ANÁLISIS CUANTITATIVO DE DATOS EN CIENCIAS SOCIALES CON EL SPSS (I) Tablas de contingencia y pruebas de asociación ANÁLISIS CUANTITATIVO DE DATOS EN CIENCIAS SOCIALES CON EL SPSS (I) Tablas de contingencia y pruebas de asociación Francisca José Serrano Pastor Pedro A. Sánchez Rodríguez - Implica siempre a variables

Más detalles

REVISION DE CONCEPTOS BÁSICOS

REVISION DE CONCEPTOS BÁSICOS REVISION DE CONCEPTOS BÁSICOS Objetivos Introducir, de manera muy general, algunos de los conceptos matemáticos y estadísticos que se utilizan en el análisis de regresión. La revisión no es rigurosa y

Más detalles

7. Distribución normal

7. Distribución normal 7. Distribución normal Sin duda, la distribución continua de probabilidad más importante, por la frecuencia con que se encuentra y por sus aplicaciones teóricas, es la distribución normal, gaussiana o

Más detalles

Validación de los métodos microbiológicos HERRAMIENTAS ESTADISTICAS. Bqca. QM Alicia I. Cuesta, Consultora Internacional de la FAO

Validación de los métodos microbiológicos HERRAMIENTAS ESTADISTICAS. Bqca. QM Alicia I. Cuesta, Consultora Internacional de la FAO Validación de los métodos microbiológicos HERRAMIENTAS ESTADISTICAS Bqca. QM Alicia I. Cuesta, Consultora Internacional de la FAO Objetivos de la clase Objetivos de la estadística. Concepto y parámetros

Más detalles

Yenny Bayona Sambrano, Edwin Cerna Figueroa, Kelva Llanos Miranda, Luis Montesinos Ruiz, Silvia Pajuelo Rojas

Yenny Bayona Sambrano, Edwin Cerna Figueroa, Kelva Llanos Miranda, Luis Montesinos Ruiz, Silvia Pajuelo Rojas Estadística I: desde un enfoque por competencias / Yenny Bayona Sambrano, Edwin Cerna Figueroa, Kelva Llanos Miranda, Luis Montesinos Ruiz,Silvia Pajuelo Rojas. -- 2a ed. -- Lima: Universidad San Ignacio

Más detalles

Estadística II Examen Final - Enero 2012. Responda a los siguientes ejercicios en los cuadernillos de la Universidad.

Estadística II Examen Final - Enero 2012. Responda a los siguientes ejercicios en los cuadernillos de la Universidad. Estadística II Examen Final - Enero 2012 Responda a los siguientes ejercicios en los cuadernillos de la Universidad. No olvide poner su nombre y el número del grupo de clase en cada hoja. Indique claramente

Más detalles

1.- DATOS DE LA ASIGNATURA. Nombre de la asignatura: Probabilidad y Estadística. Carrera: Ingeniería en Materiales. Clave de la asignatura: MAM 0524

1.- DATOS DE LA ASIGNATURA. Nombre de la asignatura: Probabilidad y Estadística. Carrera: Ingeniería en Materiales. Clave de la asignatura: MAM 0524 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos: Probabilidad y Estadística Ingeniería en Materiales MAM 0524 3 2 8 2.- HISTORIA

Más detalles

Estadística Inferencial. Sesión No. 8 Pruebas de hipótesis para varianza.

Estadística Inferencial. Sesión No. 8 Pruebas de hipótesis para varianza. Estadística Inferencial. Sesión No. 8 Pruebas de hipótesis para varianza. Contextualización. En las dos sesiones anteriores se vieron métodos de inferencia estadística para medias y proporciones poblacionales.

Más detalles

PROGRAMA COMPLETO DEL CURSO DE BIOESTADÍSTICA APLICADA A LAS CIENCIAS DE LA SALUD

PROGRAMA COMPLETO DEL CURSO DE BIOESTADÍSTICA APLICADA A LAS CIENCIAS DE LA SALUD PROGRAMA COMPLETO DEL CURSO DE BIOESTADÍSTICA APLICADA A LAS CIENCIAS DE LA SALUD 1.- Introducción a la bioestadística Introducción a la bioestadística como herramienta aplicada a las Ciencias de la Salud.

Más detalles

Estimación por intervalos

Estimación por intervalos Método de construcción de intervalos de confianza Intervalos de confianza para una población normal Estadística II Universidad de Salamanca Curso 2011/2012 Método de construcción de intervalos de confianza

Más detalles

MULTICOLINEALIDAD EN LAS REGRESORAS Y NORMALIDAD DEL TÉRMINO DE ERROR EN LOS MODELOS DE REGRESIÓN LINEAL

MULTICOLINEALIDAD EN LAS REGRESORAS Y NORMALIDAD DEL TÉRMINO DE ERROR EN LOS MODELOS DE REGRESIÓN LINEAL MULTICOLINEALIDAD EN LAS REGRESORAS Y NORMALIDAD DEL TÉRMINO DE ERROR EN LOS MODELOS DE REGRESIÓN LINEAL Noviembre, 2011 Multicolinealidad El termino multicolinealidad se le atribuye originalmente a Frisch

Más detalles

Pruebas de bondad de ajuste

Pruebas de bondad de ajuste Pruebas de bondad de ajuste Existen pruebas cuantitativas formales para determinar si el ajuste de una distribución paramétrica a un conjunto de datos es buena en algún sentido probabilístico. Objetivo:

Más detalles

2.5. Asimetría y apuntamiento

2.5. Asimetría y apuntamiento 2.5. ASIMETRÍA Y APUNTAMIENTO 59 variable Z = X x S (2.9) de media z = 0 y desviación típica S Z = 1, que denominamos variable tipificada. Esta nueva variable carece de unidades y permite hacer comparables

Más detalles

ESTADÍSTICA INFERENCIAL

ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL 1 Sesión No. 9 Nombre: Pruebas de hipótesis referentes al valor de la media de la población Contextualización Los métodos estadísticos y las técnicas de

Más detalles

Asignatura: Horas: Total (horas): Obligatoria X Teóricas 4.5 Semana 4.5 Optativa Prácticas 0.0 16 Semanas 72.0

Asignatura: Horas: Total (horas): Obligatoria X Teóricas 4.5 Semana 4.5 Optativa Prácticas 0.0 16 Semanas 72.0 UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO Aprobado por el Consejo Técnico de la Facultad de Ingeniería en su sesión ordinaria del 19 de noviembre de 2008 PROBABILIDAD

Más detalles

TEMA 5 Inferencia no paramétrica. Guía docente:

TEMA 5 Inferencia no paramétrica. Guía docente: TEMA 5 Inferencia no paramétrica Guía docente: Pruebas estadísticas unidireccionales (una cola) y pruebas estadísticas bidireccionales (dos colas) Antes de continuar con el tema nos vamos a detener en

Más detalles

TEMAS SELECTOS DE MATEMÁTICAS II

TEMAS SELECTOS DE MATEMÁTICAS II MATERIAL PARA PREPARAR EL EXAMEN DE TEMAS SELECTOS DE MATEMÁTICAS II Profesor: Rubén Oscar Costiglia Garino PREFECO David Alfaro Siqueiros MEDIAS 1. Dados los números 13 y 23 calcula: a. La media aritmética

Más detalles

Tema 5: Principales Distribuciones de Probabilidad

Tema 5: Principales Distribuciones de Probabilidad Tema 5: Principales Distribuciones de Probabilidad Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 5: Principales Distribuciones de Probabilidad

Más detalles

Una población es el conjunto de todos los elementos a los que se somete a un estudio estadístico.

Una población es el conjunto de todos los elementos a los que se somete a un estudio estadístico. Introducción a la Melilla Definición de La trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un estudio estadístico

Más detalles

BASES ESTADÍSTICAS APLICADAS A LA PREVENCIÓN

BASES ESTADÍSTICAS APLICADAS A LA PREVENCIÓN Bases Estadísticas Aplicadas a la Prevención BASES ESTADÍSTICAS APLICADAS A LA PREVENCIÓN La estadística recoge, organiza, resume y analiza datos, obteniendo conclusiones válidas. En prevención de riesgos

Más detalles

Tema 1. Modelo de diseño de experimentos (un factor)

Tema 1. Modelo de diseño de experimentos (un factor) Tema 1. Modelo de diseño de experimentos (un factor) Estadística (CC. Ambientales). Profesora: Amparo Baíllo Tema 1: Diseño de experimentos (un factor) 1 Introducción El objetivo del Análisis de la Varianza

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Tema 8 Distribución normal estándar y distribuciones relacionadas Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Explicar los conceptos de la distribución

Más detalles

Problemas resueltos. Tema 12. 2º La hipótesis alternativa será que la distribución no es uniforme.

Problemas resueltos. Tema 12. 2º La hipótesis alternativa será que la distribución no es uniforme. Tema 12. Contrastes No Paramétricos. 1 Problemas resueltos. Tema 12 1.- En una partida de Rol se lanza 200 veces un dado de cuatro caras obteniéndose 60 veces el número 1, 45 veces el número 2, 38 veces

Más detalles

ESTADISTICA INFERENCIAL

ESTADISTICA INFERENCIAL ESTADISTICA INFERENCIAL PROFESOR: DR. JORGE ACUÑA A. 1 LA ESTADISTICA Estadística descriptiva Método científico Muestreo Información de entrada y de salida Estadística inferencial Inferencias Intervalos

Más detalles

La Estadística Médica. Descripción General de la Bioestadística. Esquema de la presentación. La Bioestadística. Ejemplos de fuentes de Incertidumbre

La Estadística Médica. Descripción General de la Bioestadística. Esquema de la presentación. La Bioestadística. Ejemplos de fuentes de Incertidumbre Esquema de la presentación A. DESCRIPCIÓN GENERAL La Estadística Médica B. ORGANIZACIÓN DE LA ASIGNATURA 1. PROGRAMA 2. METODOLOGÍA DOCENTE 3. BIBLIOGRAFÍA 4. EVALUACIÓN 2 La Bioestadística Descripción

Más detalles

PLANIFICACIÓN UNIDAD 5 MATEMÁTICA IV MEDIO BICENTENARIO. CMO Aprendizajes esperados Indicador Habilidad Contenido Clases

PLANIFICACIÓN UNIDAD 5 MATEMÁTICA IV MEDIO BICENTENARIO. CMO Aprendizajes esperados Indicador Habilidad Contenido Clases PLANIFICACIÓN UNIDAD 5 MATEMÁTICA IV MEDIO BICENTENARIO CMO Aprendizajes esperados Indicador Habilidad Contenido Clases 9 y aplicar los conceptos de función densidad y distribución de probabilidad para

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL DE GUAYANA VICERRECTORADO ACADÉMICO COORDINACION DE PRE-GRADO PROYECTO DE CARRERA DE INGENIERIA INDUSTRIAL

UNIVERSIDAD NACIONAL EXPERIMENTAL DE GUAYANA VICERRECTORADO ACADÉMICO COORDINACION DE PRE-GRADO PROYECTO DE CARRERA DE INGENIERIA INDUSTRIAL VICERRECTORADO ACADÉMICO COORDINACION DE PRE-GRADO PROYECTO DE CARRERA DE INGENIERIA INDUSTRIAL PROGRAMA: ESTADISTICA I CÓDIGO ASIGNATURA: 1215-311 PRE-REQUISITO: 1215209 SEMESTRE: 3 UNIDADES DE CRÉDITO:

Más detalles

Muestreo y Distribuciones muestrales. 51 SOLUCIONES

Muestreo y Distribuciones muestrales. 51 SOLUCIONES Muestreo y Distribuciones muestrales. 51 Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Métodos estadísticos de la ingeniería Soluciones de la hoja de problemas 5. Muestreo

Más detalles

Titulación: Diplomatura en Ciencias Empresariales Órgano responsable de la docencia: Departamento de Economía Financiera y Contabilidad II

Titulación: Diplomatura en Ciencias Empresariales Órgano responsable de la docencia: Departamento de Economía Financiera y Contabilidad II Titulación: Diplomatura en Ciencias Empresariales Órgano responsable de la docencia: Departamento de Economía Financiera y Contabilidad II Asignatura: Estadística Empresarial Tipo: Troncal Curso 2008-2009

Más detalles

El método de mínimos cuadrados. Curso de Estadística TAE, 2005 J.J. Gómez-Cadenas

El método de mínimos cuadrados. Curso de Estadística TAE, 2005 J.J. Gómez-Cadenas El método de mínimos cuadrados Curso de Estadística TAE, 005 J.J. Gómez-Cadenas Mínimos cuadrados y máxima verosimilitud Teorema del límite central Una medida y, puede considerarse como un variable aleatoria,

Más detalles

PROGRAMA DE ESTADÍSTICA DESCRIPTIVA

PROGRAMA DE ESTADÍSTICA DESCRIPTIVA PROGRAMA DE ESTADÍSTICA DESCRIPTIVA CONCEPTOS BÁSICOS DE ESTADÍSTICA Definición de Estadística Origen del concepto. Evolución histórica de la Estadística Estadística Descriptiva y Estadística Inferencial

Más detalles

3. VARIABLES ALEATORIAS

3. VARIABLES ALEATORIAS . VARIABLES ALEATORIAS L as variables aleatorias se clasiican en discretas y continuas, dependiendo del número de valores que pueden asumir. Una variable aleatoria es discreta si sólo puede tomar una cantidad

Más detalles

Estadística II Tema 4. Regresión lineal simple. Curso 2010/11

Estadística II Tema 4. Regresión lineal simple. Curso 2010/11 Estadística II Tema 4. Regresión lineal simple Curso 010/11 Tema 4. Regresión lineal simple Contenidos El objeto del análisis de regresión La especificación de un modelo de regresión lineal simple Estimadores

Más detalles

La distribución normal o gaussiana es la distribución. Definición 42 Se dice que una variable X se distribuye como normal con parámetros µ y σ si

La distribución normal o gaussiana es la distribución. Definición 42 Se dice que una variable X se distribuye como normal con parámetros µ y σ si La distribución normal La distribución normal o gaussiana es la distribución continua más importante. Definición 42 Se dice que una variable X se distribuye como normal con parámetros µ y σ si f(x) = 1

Más detalles

Estadística Inferencial 3.7. Prueba de hipótesis para la varianza. σ gl = n -1. Es decir: Ho: σ 2 15 Ha: σ 2 > 15 (prueba de una cola)

Estadística Inferencial 3.7. Prueba de hipótesis para la varianza. σ gl = n -1. Es decir: Ho: σ 2 15 Ha: σ 2 > 15 (prueba de una cola) UNIDAD III. PRUEBAS DE HIPÓTESIS 3.7 Prueba de hipótesis para la varianza La varianza como medida de dispersión es importante dado que nos ofrece una mejor visión de dispersión de datos. Por ejemplo: si

Más detalles

Estadística II Tema 3. Comparación de dos poblaciones. Curso 2010/11

Estadística II Tema 3. Comparación de dos poblaciones. Curso 2010/11 Estadística II Tema 3. Comparación de dos poblaciones Curso 2010/11 Tema 3. Comparación de dos poblaciones Contenidos Comparación de dos poblaciones: ejemplos, datos apareados para la reducción de la variabilidad

Más detalles

478 Índice alfabético

478 Índice alfabético Índice alfabético Símbolos A, suceso contrario de A, 187 A B, diferencia de los sucesos A y B, 188 A/B, suceso A condicionado por el suceso B, 194 A B, intersección de los sucesos A y B, 188 A B, unión

Más detalles

D.2 ANÁLISIS ESTADÍSTICO DE LAS TEMPERATURAS DE VERANO

D.2 ANÁLISIS ESTADÍSTICO DE LAS TEMPERATURAS DE VERANO Anejo Análisis estadístico de temperaturas Análisis estadístico de temperaturas - 411 - D.1 INTRODUCCIÓN Y OBJETIVO El presente anejo tiene por objeto hacer un análisis estadístico de los registros térmicos

Más detalles

PROFESORADO DE EDUCACIÓN SECUNDARIA EN MATEMÁTICA

PROFESORADO DE EDUCACIÓN SECUNDARIA EN MATEMÁTICA PROFESORADO DE EDUCACIÓN SECUNDARIA EN MATEMÁTICA Ciclo Lectivo: 2014 Curso: Segundo Año Espacio Curricular: PROBABILIDAD Y ESTADÍSTICA I Régimen de cursado: Anual Formato: Asignatura Carga horaria: 4

Más detalles

Muestreo y estimación: problemas resueltos

Muestreo y estimación: problemas resueltos Muestreo y estimación: problemas resueltos BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhabreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimenez@ull.es) M. ISABEL MARRERO RODRÍGUEZ (imarrero@ull.es)

Más detalles

UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA DIRECCIÓN GENERAL DE ASUNTOS ACADÉMICOS PROGRAMA DE ASIGNATURA I. DATOS DE IDENTIFICACIÓN.

UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA DIRECCIÓN GENERAL DE ASUNTOS ACADÉMICOS PROGRAMA DE ASIGNATURA I. DATOS DE IDENTIFICACIÓN. 1.- Unidad Académica: Facultad de Ingeniería UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA DIRECCIÓN GENERAL DE ASUNTOS ACADÉMICOS PROGRAMA DE ASIGNATURA I. DATOS DE IDENTIFICACIÓN 2.- Programa (s) de estudio:

Más detalles

PROBABILIDAD Y ESTADÍSTICA. Sesión 5 (En esta sesión abracamos hasta tema 5.8)

PROBABILIDAD Y ESTADÍSTICA. Sesión 5 (En esta sesión abracamos hasta tema 5.8) PROBABILIDAD Y ESTADÍSTICA Sesión 5 (En esta sesión abracamos hasta tema 5.8) 5 DISTRIBUCIONES DE PROBABILIDAD CONTINUAS Y MUESTRALES 5.1 Distribución de probabilidades de una variable aleatoria continua

Más detalles

DISEÑO EXPERIMENTAL Biología, 2º Ciclo 2004-2005 Profesores: Mauro Santos y Hafid Laayouni PROGRAMA TEÓRICO

DISEÑO EXPERIMENTAL Biología, 2º Ciclo 2004-2005 Profesores: Mauro Santos y Hafid Laayouni PROGRAMA TEÓRICO DISEÑO EXPERIMENTAL Biología, 2º Ciclo 2004-2005 Profesores: Mauro Santos y Hafid Laayouni PROGRAMA TEÓRICO Tema 1 Introducción Diseño experimental e inferencia estadística: las dos caras de una misma

Más detalles

3. Análisis univariable y bivariable

3. Análisis univariable y bivariable FUOC P01/71039/00748 36 Investigación descriptiva: análisis de información 3. Análisis univariable y bivariable 3.1. Análisis univariable Como se ha visto, los métodos de análisis univariable se utilizan

Más detalles

2. Probabilidad y. variable aleatoria. Curso 2011-2012 Estadística. 2. 1 Probabilidad. Probabilidad y variable aleatoria

2. Probabilidad y. variable aleatoria. Curso 2011-2012 Estadística. 2. 1 Probabilidad. Probabilidad y variable aleatoria 2. Probabilidad y variable aleatoria Curso 2011-2012 Estadística 2. 1 Probabilidad 2 Experimento Aleatorio EL término experimento aleatorio se utiliza en la teoría de la probabilidad para referirse a un

Más detalles

La distribución Normal

La distribución Normal La distribución Normal Apellidos, nombre Martínez Gómez, Mónica (momargo@eio.upv.es) Marí Benlloch, Manuel (mamaben@eio.upv.es) Departamento Centro Estadística, Investigación Operativa Aplicadas y Calidad

Más detalles

Propiedades en una muestra aleatoria

Propiedades en una muestra aleatoria Capítulo 5 Propiedades en una muestra aleatoria 5.1. Conceptos básicos sobre muestras aleatorias Definición 5.1.1 X 1,, X n son llamadas una muestra aleatoria de tamaño n de una población f(x) si son variables

Más detalles

Estadística. Carrera: BQM - 0511 3-2-8. Participantes. Representantes de las academias de Ingeniería Bioquímica. Academia de Ingeniería Bioquímica.

Estadística. Carrera: BQM - 0511 3-2-8. Participantes. Representantes de las academias de Ingeniería Bioquímica. Academia de Ingeniería Bioquímica. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Estadística Ingeniería Bioquímica BQM - 0511 3-2-8 2.- HISTORIA DEL PROGRAMA Lugar

Más detalles

Distribuciones de probabilidad. El teorema central del límite

Distribuciones de probabilidad. El teorema central del límite 8 Distribuciones de probabilidad. El teorema central del límite Neus Canal Díaz 8.1. Introducción La distribución de frecuencias es uno de los primeros pasos que debemos realizar al inicio del análisis

Más detalles

Diferencia de medias. Estadística II Equipo Docente: Iris Gallardo Andrés Antivilo Francisco Marro

Diferencia de medias. Estadística II Equipo Docente: Iris Gallardo Andrés Antivilo Francisco Marro Sesión 15 Prueba de Hipótesis para la Diferencia de medias En qué contexto es útil una prueba de hipótesis i para la diferencia i de medias? 1. Cuando se trabaja simultáneamente con una variable categórica

Más detalles

Estadística descriptiva. Representación de datos descriptivos

Estadística descriptiva. Representación de datos descriptivos 6 Estadística descriptiva. Representación de datos descriptivos Alberto Rodríguez Benot Rodolfo Crespo Montero 6.1. Introducción Tal como vimos en la introducción, la estadística descriptiva comprende

Más detalles

Estadística inferencial. Aplicación con el SPSS

Estadística inferencial. Aplicación con el SPSS Estadística inferencial. Aplicación con el SPSS Sabina Pérez Vicente Unidad de Calidad APES Hospital Costa del Sol sabina.perez.exts@juntadeandalucia.es Comparabilidad inicial de los grupos Se debe realizar

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A OPCIÓN A 1 a 1/ 0 Se consideran las matrices A = y B =, 0 1 3/ 4 0 siendo a un número real cualquiera 014 a) (1 punto) Obtenga la matriz A 3 b) (15 puntos) Para a =, resuelva la ecuación matricial A X

Más detalles

FACULTAD DE CIENCIAS ECONOMICAS Y ADMINISTRATIVAS PROGRAMA DE MERCADEO

FACULTAD DE CIENCIAS ECONOMICAS Y ADMINISTRATIVAS PROGRAMA DE MERCADEO FACULTAD DE CIENCIAS ECONOMICAS Y ADMINISTRATIVAS PROGRAMA DE MERCADEO I. IDENTIFICACIÓN DE LA ASIGNATURA NOMBRE: Estadística I CODIGO: 41A03 PRERREQUISITO: Matemática I SEMESTRE: III CRÉDITOS: 3 II. OBJETIVO

Más detalles

Prueba de hipótesis. 1. Considerando lo anterior específica: a. La variable de estudio: b. La población: c. El parámetro. d. Estimador puntual:

Prueba de hipótesis. 1. Considerando lo anterior específica: a. La variable de estudio: b. La población: c. El parámetro. d. Estimador puntual: Prueba de hipótesis Problema Un grupo de profesores, de cierto estado de la república, plantea una investigación acerca del aprendizaje de las ciencias naturales en la escuela primaria. Uno de los objetivos

Más detalles

UNIVERSIDAD DE CIENCIAS EMPRESARIALES Y SOCIALES FACULTAD DE CIENCIAS EMPRESARIALES

UNIVERSIDAD DE CIENCIAS EMPRESARIALES Y SOCIALES FACULTAD DE CIENCIAS EMPRESARIALES UNIVERSIDAD DE CIENCIAS EMPRESARIALES Y SOCIALES FACULTAD DE CIENCIAS EMPRESARIALES CARRERA: LICENCIATURA EN TURISMO ASIGNATURA: ESTADÍSTICA SOCIAL CURSO: 3er. AÑO AÑO: 2015 CARGA HORARIA SEMANAL: CUATRO

Más detalles

FORMULARIO. Rango intercuartílico: Diferencia entre el tercer y primer cuartil

FORMULARIO. Rango intercuartílico: Diferencia entre el tercer y primer cuartil FORMULARIO Dato: x 1, x 2,..., x N } Media: x = N i=1 x i N Rango intercuartílico: Diferencia entre el tercer y primer cuartil Varianza: 2 = N i=1 (x i x) 2 = N i=1 x2 i N x2 Deviación típica: = N i=1

Más detalles

ESCUELA COMERCIAL CÁMARA DE COMERCIO EXTENSIÓN DE ESTUDIOS PROFESIONALES MAESTRÍA EN ADMINISTRACIÓN

ESCUELA COMERCIAL CÁMARA DE COMERCIO EXTENSIÓN DE ESTUDIOS PROFESIONALES MAESTRÍA EN ADMINISTRACIÓN CICLO, ÁREA O MÓDULO: TERCER CUATRIMESTRE OBJETIVO GENERAL DE LA ASIGNATURA: Al termino del curso el alumno efectuara el análisis ordenado y sistemático de la Información, a través del uso de las técnicas

Más detalles

CONTENIDO. Prólogo a la 3. a edición en español ampliada... Prólogo...

CONTENIDO. Prólogo a la 3. a edición en español ampliada... Prólogo... CONTENIDO Prólogo a la 3. a edición en español ampliada.................................. Prólogo.................................................................. vii xvii 1. Métodos descriptivos................................................

Más detalles

Estadística Empresarial II

Estadística Empresarial II Estadística Empresarial II Grado en Administración y Dirección de Empresas Curso Académico 2010/2011 Segundo Curso Primer Cuatrimestre GUÍA DOCENTE Nombre de la asignatura: Estadística Empresarial II Código:

Más detalles

Medidas de Dispersión

Medidas de Dispersión Medidas de Dispersión Revisamos la tarea de la clase pasada Distribución de Frecuencias de las distancias alcanzadas por las pelotas de golf nuevas: Dato Frecuencia 3.7 1 4.4 1 6.9 1 3.3 1 3.7 1 33.5 1

Más detalles

PROFESORADO DE EDUCACIÓN SECUNDARIA EN MATEMÁTICA EJE I-ALGUNAS DISTRIBUCIONES CONTINUAS DE PROBABILIDAD

PROFESORADO DE EDUCACIÓN SECUNDARIA EN MATEMÁTICA EJE I-ALGUNAS DISTRIBUCIONES CONTINUAS DE PROBABILIDAD PROFESORADO DE EDUCACIÓN SECUNDARIA EN MATEMÁTICA Ciclo Lectivo: 2014 Curso: Tercer año Espacio Curricular: PROBABILIDAD Y ESTADÍSTICA II Régimen de cursado: Anual Formato: Módulo Carga horaria: 4 hs cátedra.

Más detalles

Estadística Descriptiva. SESIÓN 12 Medidas de dispersión

Estadística Descriptiva. SESIÓN 12 Medidas de dispersión Estadística Descriptiva SESIÓN 12 Medidas de dispersión Contextualización de la sesión 12 En la sesión anterior se explicaron los temas relacionados con la desviación estándar, la cual es una medida para

Más detalles
Sitemap