Computación Científica


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Computación Científica"

Transcripción

1 Computación Científica Gustavo Rodríguez Gómez INAOE Agosto Dicembre / 19

2 Capítulo 2 Métodos Gradientes 2 / 19

3 1 Métodos Gradiente Introducción El método del gran descenso "steepest descent") Criterios de parada Funciones cuadráticas 3 / 19

4 Superficie de nivel Métodos Gradiente Introducción Sea f : Ω R n R una función. La hipersuperficie de nivel, superficie de nivel si n = 3, curva de nivel si n = 2, está definida por S = {x Ω f x) = c, constante real} Figure: Curvas de Nivel para una función f x) 4 / 19

5 Métodos Gradiente Propiedades del gradiente Ya que la derivada direccional de f x) en la dirección de d = f x)/ f x), d = 1, está dada por entonces f x) d = f x), d = f x) d cos θ = f x), La función f x) crece más rápidamente en la dirección de f x). La función f x) decrece más rápidamente en la dirección de f x). Cualquier dirección u R n ortogonal al f x) es una dirección de cambio nulo. 5 / 19

6 Métodos Gradiente Dirección del gradiente Dirección de búsqueda La dirección negativa del gradiente, f x), es una buena dirección de búsqueda para encontrar un minimizador de la función. 6 / 19

7 Métodos Gradiente Algoritmo gradiente descendente Algoritmo del gradiente descendente Dado un punto de inicio x [k] para encontrar el siguiente punto x [k+1], comenzamos en x [k] y nos desplazamos por una cantidad α k f x [k] ): x [k+1] = x [k] α k f x [k] ). 7 / 19

8 Métodos Gradiente El método del descenso rapido El método del gran descenso "steepest descent") 1 El método del descenso rapido es un algoritmo tipo gradiente descendente. 8 / 19

9 Métodos Gradiente El método del gran descenso "steepest descent") El método del descenso rapido 1 El método del descenso rapido es un algoritmo tipo gradiente descendente. 2 El tamaño del paso α k se selecciona para maximizar la cantidad que decrece la función objetivo en cada paso. 9 / 19

10 Métodos Gradiente El método del gran descenso "steepest descent") El método del descenso rapido 1 El método del descenso rapido es un algoritmo tipo gradiente descendente. 2 El tamaño del paso α k se selecciona para maximizar la cantidad que decrece la función objetivo en cada paso. 3 El parámetro α k se escoge para ) minimizar φ k α) = f x [k] α f x [k] ), esto es ) α k = arg min f x [k] α f x [k] ) α 0 10 / 19

11 Métodos Gradiente El método del descenso rapido El método del gran descenso "steepest descent") Teorema Si {x [k]} es una sucesión descendente para la función f : k=0 Rn R, entonces para cada k el vector x [k+1] x [k] es ortogonal al vector x [k+2] x [k+1]. Teorema Si {x [k]} es la sucesión descendente para la función f : k=0 Rn R y si f x [k] ) = 0, entonces f x [k+1]) < f x [k]). 11 / 19

12 Criterios de parada Verificar si el usuario. f Métodos Gradiente Criterios de parada x [k]) < ε, donde ε > 0 es un umbral definido por 12 / 19

13 Criterios de parada Verificar si el usuario. Verificar si f f definido por el usuario. Métodos Gradiente Criterios de parada x [k]) < ε, donde ε > 0 es un umbral definido por x [k+1]) f x [k]) < ε, donde ε > 0 es un umbral 13 / 19

14 Criterios de parada Verificar si el usuario. Verificar si f f Métodos Gradiente Criterios de parada x [k]) < ε, donde ε > 0 es un umbral definido por x [k+1]) f x [k]) < ε, donde ε > 0 es un umbral definido por el usuario. Verificar si x [k+1] x [k] < ε, donde ε > 0 es un umbral definido por el usuario. 14 / 19

15 Criterios de parada Verificar si el usuario. Verificar si f f Métodos Gradiente Criterios de parada x [k]) < ε, donde ε > 0 es un umbral definido por x [k+1]) f x [k]) < ε, donde ε > 0 es un umbral definido por el usuario. Verificar si x [k+1] x [k] < ε, donde ε > 0 es un umbral definido por el usuario. Verificar errores relativos en los valores de f x) f x [k+1]) f x [k]) f x [k]) < ε 15 / 19

16 Criterios de parada Verificar si el usuario. Verificar si f f Métodos Gradiente Criterios de parada x [k]) < ε, donde ε > 0 es un umbral definido por x [k+1]) f x [k]) < ε, donde ε > 0 es un umbral definido por el usuario. Verificar si x [k+1] x [k] < ε, donde ε > 0 es un umbral definido por el usuario. Verificar errores relativos en los valores de f x) f x [k+1]) f x [k]) f x [k]) < ε Verificar errores relativos en las x x [k+1] x [k] x [k] < ε 16 / 19

17 Métodos Gradiente Criterios de parada Criterios de parada divisiones por números pequeños) Para evitar dividir por números pequeños se pueden utilizar los siguientes criterios f x [k+1]) f x [k]) max 1, f x [k]) ) < ε, x [k+1] x [k] max 1, x [k] ) < ε 17 / 19

18 Métodos Gradiente Funciones cuadráticas Funciones cuadráticas Funciones cuadráticas Considere la siguiente función cuadrática f x) = 1 2 x T Qx b T x, donde Q R n n es simétrica y positiva definida, b, x R n. Objetivo Analizar el comportamiento del algoritmo del descenso rápido cuando se aplica a la anterior función cuadrática. 18 / 19

19 Funciones cuadráticas Métodos Gradiente Funciones cuadráticas Lema El método del descenso rápido aplicado a la función cuadrática f x) = 1 2 x T Qx b T x, toma la forma donde ) x [k+1] = x [k] g [k]t g [k] g [k]t Qg [k] g [k], g [k] = f x [k] ) = Qx [k] b. 19 / 19

CÁLCULO DIFERENCIAL Muestras de examen

CÁLCULO DIFERENCIAL Muestras de examen CÁLCULO DIFERENCIAL Muestras de examen Febrero 2012 T1. [2] Demostrar que la imagen continua de un conjunto compacto es compacto. T2. [2.5] Definir la diferencial de una función en un punto y demostrar

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATMÁTICA

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATMÁTICA UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATMÁTICA CURSO: Matemática Intermedia JORNADA: Matutina SEMESTRE: do. Semestre AÑO: 03 TIPO DE EXAMEN: NOMBRE DEL AUXILIAR:

Más detalles

P. A. U. LAS PALMAS 2005

P. A. U. LAS PALMAS 2005 P. A. U. LAS PALMAS 2005 OPCIÓN A: J U N I O 2005 1. Hallar el área encerrada por la gráfica de la función f(x) = x 3 4x 2 + 5x 2 y la rectas y = 0, x = 1 y x = 3. x 3 4x 2 + 5x 2 es una función polinómica

Más detalles

Geometría de las superficies

Geometría de las superficies Geometría de las superficies Klette, schluns, koschan Computer vision: three dimensional data from images Cap 3 1 Representaciones funcionales Representación mediante una ecuación condicional para X e

Más detalles

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B 1. Queremos invertir una cantidad de dinero en dos tipos

Más detalles

Integración por el método de Monte Carlo

Integración por el método de Monte Carlo Integración por el método de Monte Carlo Georgina Flesia FaMAF 29 de marzo, 2012 El método de Monte Carlo El método de Monte Carlo es un procedimiento general para seleccionar muestras aleatorias de una

Más detalles

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos.

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. CAPÍTULO IV. CONTINUIDAD DE FUNCIONES SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. 121 A. DEFINICIÓN DE FUNCIÓN CONTINUA. Una función

Más detalles

Oferta de Trabajo. Economía Laboral Julio J. Elías LIE - UCEMA

Oferta de Trabajo. Economía Laboral Julio J. Elías LIE - UCEMA Oferta de Trabajo Economía Laboral Julio J. Elías LIE - UCEMA Introducción La oferta de trabajo es definida como las horas totales de trabajo ofrecidas al mercado en un período de tiempo dado, digamos

Más detalles

CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA. (Se utiliza el valor de la función en el extremo izquierdo de cada subintervalo)

CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA. (Se utiliza el valor de la función en el extremo izquierdo de cada subintervalo) CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA El problema del área, el problema de la distancia tanto el valor del área debajo de la gráfica de una función como la distancia recorrida por un objeto

Más detalles

Microeconomía Básica

Microeconomía Básica Microeconomía Básica Colección de 240 preguntas tipo test, resueltas por Eduardo Morera Cid, Economista Colegiado. Cada sesión constará de una batería de 20 preguntas tipo test y las respuestas a las propuestas

Más detalles

Cuatro Problemas de Álgebra en la Olimpiada Internacional de Matemáticas.

Cuatro Problemas de Álgebra en la Olimpiada Internacional de Matemáticas. Boletín de la Asociación Matemática Venezolana, Vol. XV, No. 1 (2008) 131 Cuatro Problemas de Álgebra en la Olimpiada Internacional de Matemáticas. Rafael Sánchez Lamoneda Introducción. El presente artículo

Más detalles

DESCRIPCIÓN DE FUNCIONES 1.1.2 y 1.1.3

DESCRIPCIÓN DE FUNCIONES 1.1.2 y 1.1.3 Capítulo DESCRIPCIÓN DE FUNCIONES..2..3 El objetivo principal de estas lecciones consiste en que los alumnos puedan describir totalmente los elementos esenciales del gráfico de una función. Para describir

Más detalles

Límite de una función

Límite de una función Límite de una función El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es decir el valor al que tienden

Más detalles

ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2.3

ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2.3 ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2. Transformaciones ortogonales (Curso 2010 2011) 1. Se considera el espacio vectorial euclídeo IR referido a una base ortonormal. Obtener la expresión

Más detalles

W =F t. 0 Trabajo y energía. W = F r= F r cos. Donde F cos es la componente de la fuerza en la dirección del desplazamiento F t.

W =F t. 0 Trabajo y energía. W = F r= F r cos. Donde F cos es la componente de la fuerza en la dirección del desplazamiento F t. El trabajo mecánico realizado por una fuerza constante, F, que actúa sobre un cuerpo que realiza un desplazamiento r es igual al producto escalar de la fuerza por el desplazamiento. Es decir: W = F r=

Más detalles

Aversión al riesgo, equivalente cierto y precios de reserva

Aversión al riesgo, equivalente cierto y precios de reserva Aversión al riesgo, equivalente cierto y precios de reserva Ricard Torres ITAM Economía Financiera, 2015 Ricard Torres (ITAM) Aversión al riesgo, equivalente cierto y precios de reserva Economía Financiera

Más detalles

Álgebra Lineal Ma1010

Álgebra Lineal Ma1010 Álgebra Lineal Ma1010 es en R n y producto punto Departamento de Matemáticas ITESM es en R n y producto punto Álgebra Lineal - p. 1/40 En este apartado se introduce el concepto de vectores en el espacio

Más detalles

Tema 8: Análisis Discriminante. Clasificación. Aurea Grané Departamento de Estadística Universidad Carlos III de Madrid. Análisis discriminante

Tema 8: Análisis Discriminante. Clasificación. Aurea Grané Departamento de Estadística Universidad Carlos III de Madrid. Análisis discriminante Aurea Grané. Máster en Estadística. Universidade Pedagógica. 1 Aurea Grané. Máster en Estadística. Universidade Pedagógica. 2 Análisis discriminante Tema 8: Análisis Discriminante y Clasificación Aurea

Más detalles

Universidad Autónoma de la Ciudad de México Nada humano me es ajeno

Universidad Autónoma de la Ciudad de México Nada humano me es ajeno Proyectos para el curso Introducción a la programación. 1.-Desarrollador general del binomio al cuadrado. A continuación se muestra una corrida del programa que desarrolla un binomio al cuadrado, a partir

Más detalles

cuadrada de 3 filas y tres columnas cuyo determinante vale 2.

cuadrada de 3 filas y tres columnas cuyo determinante vale 2. PROBLEMAS DE SELECTIVIDAD. BLOQUE ÁLGEBRA MATEMÁTICAS II 0 2 0. Se dan las matrices A, I y M, donde M es una matriz de dos 3 0 filas y dos columnas que verifica M 2 = M. Obtener razonadamente: a) Todos

Más detalles

ESCUELA SUPERIOR DE INGENIEROS DE SAN SEBASTIÁN TECNUN UNIVERSIDAD DE NAVARRA. Práctica 2 de Laboratorio ESTUDIO DEL RÉGIMEN TRANSITORIO

ESCUELA SUPERIOR DE INGENIEROS DE SAN SEBASTIÁN TECNUN UNIVERSIDAD DE NAVARRA. Práctica 2 de Laboratorio ESTUDIO DEL RÉGIMEN TRANSITORIO ESCUELA SUPERIOR DE INGENIEROS DE SAN SEBASTIÁN TECNUN UNIVERSIDAD DE NAVARRA Práctica de Laboratorio ESTUDIO DEL RÉGIMEN TRANSITORIO EL OSCILOSCOPIO DIGITAL Circuitos. Estudio del Régimen Transitorio.

Más detalles

Vectores en R n y producto punto

Vectores en R n y producto punto Vectores en R n y producto punto Departamento de Matemáticas, CCIR/ITESM 10 de enero de 011 Índice 4.1. Introducción............................................... 1 4.. Vector..................................................

Más detalles

Funciones vectoriales de variable vectorial. Son aplicaciones entre espacios eucĺıdeos, IR n, f : X IR n Y IR m

Funciones vectoriales de variable vectorial. Son aplicaciones entre espacios eucĺıdeos, IR n, f : X IR n Y IR m Funciones vectoriales de variable vectorial Son aplicaciones entre espacios eucĺıdeos, IR n, f : X IR n Y IR m x y x = (x 1, x 2,, x n ), y = (y 1, y 2,, y m ) e y j = f j (x 1, x 2,, x n ), 1 j n n =

Más detalles

Teoría de la Empresa. La Tecnología de Producción

Teoría de la Empresa. La Tecnología de Producción Teoría de la Empresa La Tecnología de Producción La Empresa Qué es una Empresa? En la práctica, el concepto de empresa, y el papel que las empresa desempeñan en la economía, son extraordinariamente complejos.

Más detalles

Circuitos de RF y las Comunicaciones Analógicas. Capítulo VII: Amplificadores de RF de potencia

Circuitos de RF y las Comunicaciones Analógicas. Capítulo VII: Amplificadores de RF de potencia Capítulo VII: Amplificadores de RF de potencia 109 110 7. Amplificadores RF de potencia 7.1 Introducción El amplificador de potencia (PA) es la última etapa de un trasmisor. Tiene la misión de amplificar

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:

Más detalles

Tema 1. La tecnología y los costes de producción

Tema 1. La tecnología y los costes de producción Tema 1. La tecnología y los costes de producción Andrés Enrique Romeu Santana Microeconomía 2 GADE OpenCourseWare 2012 Microeconomía (2 GADE) TEMA 1. LA PRODUCCIÓN OpenCourseWare 2012 1 / 27 Contenidos

Más detalles

Capítulo 8. Termodinámica

Capítulo 8. Termodinámica Capítulo 8 Termodinámica 1 Temperatura La temperatura es la propiedad que poseen los cuerpos, tal que su valor para ellos es el mismo siempre que estén en equilibrio térmico. Principio cero de la termodinámica:

Más detalles

SIIGO Pyme. Parámetros Gestión de Recaudos. Cartilla I

SIIGO Pyme. Parámetros Gestión de Recaudos. Cartilla I SIIGO Pyme Parámetros Gestión de Recaudos Cartilla I Tabla de Contenido 1. Presentación 2. Qué son Parámetros? 3. Cuál es la Ruta para Definir los Parámetros del Módulo Gestión de Recaudos? 4. Cuáles son

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO -.1 - CONVOCATORIA: Junio MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumno debe elegir sólo una de las pruebas (A o B) y, dentro de ella, sólo

Más detalles

Algoritmos sobre secuencias y conjuntos de datos

Algoritmos sobre secuencias y conjuntos de datos Suma de la Subsecuencia Máxima Dept. de Computación, Universidade da Coruña alberto.valderruten@udc.es Índice Suma de la Subsecuencia Máxima 1 Suma de la Subsecuencia Máxima 2 Suma de la Subsecuencia Máxima

Más detalles

INTRO. LÍMITES DE SUCESIONES

INTRO. LÍMITES DE SUCESIONES INTRO. LÍMITES DE SUCESIONES Con el estudio de límites de sucesiones se inaugura el bloque temático dedicado al cálculo (o análisis) infinitesimal. Este nombre se debe a que se va a especular con cantidades

Más detalles

Programación Lineal (PL)

Programación Lineal (PL) Programación Lineal (PL) Se llama programación lineal al conjunto de técnicas matemáticas que pretenden resolver la siguiente situación. El objetivo es Optimizar, una función objetivo, lo cual implica

Más detalles

Espacios Vectoriales www.math.com.mx

Espacios Vectoriales www.math.com.mx Espacios Vectoriales Definiciones básicas de Espacios Vectoriales www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 007-009 Contenido. Espacios Vectoriales.. Idea Básica de Espacio Vectorial.................................

Más detalles

TEMA 2 EXPERIMENTOS ALEATORIOS Y CÁLCULO DE PROBABILIDADES

TEMA 2 EXPERIMENTOS ALEATORIOS Y CÁLCULO DE PROBABILIDADES TEMA 2 EXPERIMENTOS ALEATORIOS Y CÁLCULO DE PROBABILIDADES EXPERIMENTOS: EJEMPLOS Deterministas Calentar agua a 100ºC vapor Soltar objeto cae Aleatorios Lanzar un dado puntos Resultado fútbol quiniela

Más detalles

Máquinas de Vectores de Soporte

Máquinas de Vectores de Soporte Máquinas de Vectores de Soporte Support Vector Machines (SVM) Introducción al Reconocimiento de Patrones IIE - FING - UdelaR 2015 Bishop, Cap. 7 Schölkopf & Smola, Cap 7 Motivación Limitantes del perceptrón:

Más detalles

Tema 5: Modelos de Iluminación y Sombreado

Tema 5: Modelos de Iluminación y Sombreado J. Ribelles SIE020: Síntesis de Imagen y Animación Institute of New Imaging Technologies, Universitat Jaume I Contenido 1 2 3 4 Un modelo de iluminación determina el color de la superficie en un punto.

Más detalles

PROGRAMA DE CURSO. Horas de Trabajo Personal 6 10 3,0 2,0 5,0. Horas de Cátedra

PROGRAMA DE CURSO. Horas de Trabajo Personal 6 10 3,0 2,0 5,0. Horas de Cátedra PROGRAMA DE CURSO Código MA100 Nombre Introducción al Cálculo Nombre en Inglés Calculus SCT Unidades Docentes Horas de Cátedra Horas Docencia Auxiliar Horas de Trabajo Personal 6 10 3,0 2,0 5,0 Requisitos

Más detalles

Muestras y Pruebas PVT

Muestras y Pruebas PVT CAPÍTULO 2 Muestras y Pruebas PVT II - 1 Viscosidad del Petróleo, µo Crudo Subsaturado p => µo por expansión. Crudo Saturado p = > µo por reducción del gas es solución En un yacimiento agotado, el crudo

Más detalles

Respuesta: ( 1; 2] [ [3; 1)

Respuesta: ( 1; 2] [ [3; 1) UNIVERSIDAD MAYOR DE SAN SIMON FACULTAD DE CIENCIAS Y TECNOLOGIA DIRECCION DE POSTGRADO - CARRERA DE FISICA DIPLOMADO EN FISICA MODULO MATEMATICAS PRUEBA DE EVALUACION (16 de Junio de 016)......... Apellido

Más detalles

A. Sustancia pura, isotermal de una atmósfera a presión constante. 1. dg = V dp - S dt (1) 2. dg = V dp (2) 3. (3) 4. (4)

A. Sustancia pura, isotermal de una atmósfera a presión constante. 1. dg = V dp - S dt (1) 2. dg = V dp (2) 3. (3) 4. (4) POTENCIAL QUÍMICO Y CAMBIO DE FASES I. Potencial químico: gas ideal y su estado patrón. A. Sustancia pura, isotermal de una atmósfera a presión constante. 1. dg = V dp - S dt (1) 2. dg = V dp (2) 3. (3)

Más detalles

Teoría de Juegos Prof. Mauricio Romero Taller preparación 1-13 de Julio de 2013

Teoría de Juegos Prof. Mauricio Romero Taller preparación 1-13 de Julio de 2013 Teoría de Juegos Prof. Mauricio Romero Taller preparación 1-13 de Julio de 2013 Nota 1: Debe devolver este enunciado y todas las hojas que le entreguen. Nota 2: Está prohibido el uso de calculadora y de

Más detalles

Análisis aplicado. Ax = b. Gradiente conjugado.

Análisis aplicado. Ax = b. Gradiente conjugado. José Luis Morales http://allman.rhon.itam.mx/ jmorales Departamento de Matemáticas. ITAM. 2009. Cuadráticas estrictamente convexas. φ(x) = 1 2 xt Ax b T x, A R n n minimizar φ(x) Ax = b. Cuadráticas estrictamente

Más detalles

Breve introducción a las turbinas eólicas Darrieus

Breve introducción a las turbinas eólicas Darrieus LA VERITAT (www.amics21.com) Breve introducción a las turbinas eólicas Darrieus Aerogenerador Darrieus por Manuel Franquesa Voneschen 1 Estos aerogeneradores de eje vertical son máquinas bastante sofisticadas,

Más detalles

Variación n de las temperaturas en el ciclo

Variación n de las temperaturas en el ciclo Análisis térmico t de la inyección Variación n de las temperaturas en el ciclo Juan de Juanes Márquez M Sevillano Interés s del control de temperatura del molde Una de los parámetros más m s importantes

Más detalles

Capítulo II Límites y Continuidad

Capítulo II Límites y Continuidad (Apuntes en revisión para orientar el aprendizaje) INTRODUCCIÓN Capítulo II Límites y Continuidad El concepto de límite, después del de función, es el fundamento matemático más importante que ha cimentado

Más detalles

Guía rápida de configuración del Videograbador DX4104. Manual Paso a Paso

Guía rápida de configuración del Videograbador DX4104. Manual Paso a Paso Guía rápida de configuración del Videograbador DX4104 Manual Paso a Paso 1-Introducción Este documento es una guía paso a paso para configurar de manera rápida el videograbador de hasta 4 cámaras analógicas,

Más detalles

7. Poblar base de datos a partir de documentos XML validados con esquemas XML

7. Poblar base de datos a partir de documentos XML validados con esquemas XML 7. Poblar base de datos a partir de documentos XML validados con esquemas XML En este capítulo se aborda el tema de la población de la base de datos que se creó con el constructor automático de bases de

Más detalles

Determinación de órbitas periódicas usando el método ciclos lentos rápidos

Determinación de órbitas periódicas usando el método ciclos lentos rápidos Determinación de órbitas periódicas usando el método ciclos lentos rápidos Manuel Fidel Domínguez Azueta, Gamaliel Blé González Universidad Juárez Autónoma de Tabasco, México Recibido 6 de f ebrero 2015.

Más detalles

POLINOMIOS. Matemática Intermedia Profesora Mónica Castro

POLINOMIOS. Matemática Intermedia Profesora Mónica Castro POLINOMIOS Matemática Intermedia Profesora Mónica Castro Objetivos Definir y repasar los conceptos básicos de polinomios. Discutir los distintos métodos de factorización de polinomios. Establecer distintas

Más detalles

FÍSICA GENERAL. MC Beatriz Gpe. Zaragoza Palacios 2015 Departamento de Física Universidad de Sonora

FÍSICA GENERAL. MC Beatriz Gpe. Zaragoza Palacios 2015 Departamento de Física Universidad de Sonora FÍSICA GENERAL MC Beatriz Gpe. Zaragoza Palacios 015 Departamento de Física Universidad de Sonora TEMARIO 0. Presentación 1. Mediciones y vectores. Equilibrio traslacional 3. Movimiento uniformemente acelerado

Más detalles

Campos gravitatorios en el espacio muestral

Campos gravitatorios en el espacio muestral Campos gravitatorios en el espacio muestral Dept. Lenguajes y Ciencias de la Computación Septiembre, 2004 1/28 Enfocando el problema Aprendizaje supervisado Clasificación dicotómica (2 clases) Atributos

Más detalles

UNIDAD 5.- LA ELECTRICIDAD

UNIDAD 5.- LA ELECTRICIDAD UNIDAD 5.- LA ELECTRICIDAD 5.1. CONCEPTOS GENERALES. 5.2. CORRIENTE ELÉCTRICA. 5.3. CIRCUITO ELÉCTRICO: SIMBOLOGÍA 5.4. MAGNITUDES ELÉCTRICAS: LA LEY DE OMH 5.5. ASOCIACIÓN DE RECEPTORES 5.1. CONCEPTOS

Más detalles

Plan de Estudios de la Carrera de Licenciatura en Turismo. Código MAT 1. Ciclo Académico: Área Curricular: Básica UVA 4

Plan de Estudios de la Carrera de Licenciatura en Turismo. Código MAT 1. Ciclo Académico: Área Curricular: Básica UVA 4 Nombre de la asignatura: MATEMÁTICA 1 a) Generalidades: Pre-requisito Bachill erato Código MAT 1 Ciclo Académico: Área Curricular: 1 Básica UVA 4 Duración del ciclo en semanas Duración Hora/clase en minutos

Más detalles

TEMA 4. Los mercados de bienes y financieros: el modelo IS-LM

TEMA 4. Los mercados de bienes y financieros: el modelo IS-LM TEMA 4 Los mercados de bienes y financieros: el modelo IS-LM Manual: Macroeconomía, Olivier Blanchard Presentaciones: Fernando e Yvonn Quijano 1 de 35 1 El mercado de bienes y la relación IS Hay equilibrio

Más detalles

Algoritmos: Algoritmos sobre secuencias y conjuntos de datos

Algoritmos: Algoritmos sobre secuencias y conjuntos de datos Algoritmos: Algoritmos sobre secuencias y conjuntos de datos Alberto Valderruten LFCIA - Departamento de Computación Facultad de Informática Universidad de A Coruña, España www.lfcia.org/alg www.fi.udc.es

Más detalles

26 Apuntes de Matemáticas II para preparar el examen de la PAU

26 Apuntes de Matemáticas II para preparar el examen de la PAU 6 Apuntes de Matemáticas II para preparar el examen de la PAU Unidad. Funciones.Continuidad TEMA FUNCIONES. CONTINUIDAD. 1. Definición de Continuidad. Tipos de discontinuidades 3. Continuidad de las funciones

Más detalles

GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I LEYES DE NEWTON PARA EL MOVIMIENTO SEGUNDA LEY DE NEWTON

GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I LEYES DE NEWTON PARA EL MOVIMIENTO SEGUNDA LEY DE NEWTON GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I LEYES DE NEWTON PARA EL MOVIMIENTO SEGUNDA LEY DE NEWTON SANTIAGO DE CALI UNIVERSIDAD SANTIAGO DE CALI DEPARTAMENTO DE LABORATORIOS LA SEGUNDA LEY DE NEWTON 1. Introducción

Más detalles

Un paseo por algunas curvas de nivel elementales en la Geometría Martin Celli*, Jorge Martínez Valdez, Ahmed A. Silva Hernández

Un paseo por algunas curvas de nivel elementales en la Geometría Martin Celli*, Jorge Martínez Valdez, Ahmed A. Silva Hernández Un paseo por algunas curvas de nivel elementales en la Geometría Martin Celli*, Jorge Martínez Valdez, Ahmed A. Silva Hernández *Depto. de Matemáticas, UAM-I cell@xanum.uam.mx 70 ContactoS 90, 69 74 013

Más detalles

FINANZAS. introducción a los derivados crediticios y, por último, un caso de cobertura de un porfolio de préstamos utilizando Credit Default Swaps.

FINANZAS. introducción a los derivados crediticios y, por último, un caso de cobertura de un porfolio de préstamos utilizando Credit Default Swaps. Colaboración: Gabriel Gambetta, CIIA 2007, Controller Financiero SAP Global Delivery. Profesor Especialización Administración Financiera (UBA) Profesor de Microeconomía (UBA) Este trabajo pretende encontrar

Más detalles

Diferenciabilidad de funciones de R n en R m

Diferenciabilidad de funciones de R n en R m Diferenciabilidad de funciones de R n en R m Cálculo II (2003) En este capítulo generalizamos la noción de diferenciabilidad para funciones vectoriales de variable vectorial, que también llamamos aplicaciones.

Más detalles

Ejercicios para Concurso de Programación Nivel Medio Superior

Ejercicios para Concurso de Programación Nivel Medio Superior Ejercicios para Concurso de Programación Nivel Medio Superior Problema 1 Codifica un programa en donde el usuario capture los valores de cuatro variables (a,b,c,d), si el valor de la variable a es diferente

Más detalles

REGLAS PRÁCTICAS PARA EL CÁLCULO DE LÍMITES DE FUNCIONES

REGLAS PRÁCTICAS PARA EL CÁLCULO DE LÍMITES DE FUNCIONES REGLAS PRÁCTICAS PARA EL CÁLCULO DE LÍMITES DE FUNCIONES Cuadro resumen de las INDETERMINACIONES. Tipo I. k f () a Método: calcular los límites laterales. Ejemplo: 6 0 0 Tipo II. f () a Caso. f() es un

Más detalles

Introducción a la Teoría de Subastas

Introducción a la Teoría de Subastas Introducción a la Teoría de Subastas Correval - Sesión 2 Alvaro J. Riascos Villegas Universidad de los Andes y Quantil Enero 25 de 2012 Alvaro J. Riascos Villegas (Universidad de los Andes Introducción

Más detalles

Conferencias sobre normativa

Conferencias sobre normativa Conferencias sobre normativa de estructuras de madera 1 La siguiente presentación forma parte de las Conferencias sobre normativa de estructuras de madera realizadas el lunes 1 de setiembre de 2014, en

Más detalles

Capítulo 4 Exploración del ambiente.

Capítulo 4 Exploración del ambiente. Capítulo 4 Exploración del ambiente. Para explorar el ambiente se tomó como base el vehículo explorador de Braitenberg, la idea es tomar este comportamiento y adaptarlo al uso de una cámara de video, esto

Más detalles

MEDIDAS DE POSICIÓN. FUENTE: Gómez, Elementos de Estadística Descriptiva Levin & Rubin. Estadística para Administradores

MEDIDAS DE POSICIÓN. FUENTE: Gómez, Elementos de Estadística Descriptiva Levin & Rubin. Estadística para Administradores UNIVERSIDAD DE COSTA RICA ESCUELA DE ESTADÍSTICA Prof. Olman Ramírez Moreira MEDIDAS DE POSICIÓN FUENTE: Gómez, Elementos de Estadística Descriptiva Levin & Rubin. Estadística para Administradores 1 OBJETIVO

Más detalles

GUÍA DOCENTE CURSO: 2009-10

GUÍA DOCENTE CURSO: 2009-10 DATOS BÁSICOS DE LA ASIGNATURA GUÍA DOCENTE CURSO: 2009-10 Asignatura: Metodología en Bioquímica Y Biología Molecular Código de asignatura: 70281102 Plan: Máster en Química Avanzada Aplicada Año académico:

Más detalles

Organización de Computadoras 2014. Apunte 2: Sistemas de Numeración: Punto Flotante

Organización de Computadoras 2014. Apunte 2: Sistemas de Numeración: Punto Flotante Organización de Computadoras 2014 Apunte 2: Sistemas de Numeración: Punto Flotante La coma o punto flotante surge de la necesidad de representar números reales y enteros con un rango de representación

Más detalles

Crecimiento y Convergencia Introducción. Crecimiento y Convergencia Introducción. Por qué hay tantas diferencias en niveles?

Crecimiento y Convergencia Introducción. Crecimiento y Convergencia Introducción. Por qué hay tantas diferencias en niveles? Introducción El Banco Mundial ha calculado para 2004 la Renta Nacional Bruta per cápita valorada en dólares ajustados con paridades de poder de compra de 206 países para los que hay estadísticas suficientes.

Más detalles

Objetivos y Temario CURSO SQL SERVER 2012

Objetivos y Temario CURSO SQL SERVER 2012 Objetivos y Temario CURSO SQL SERVER 2012 OBJETIVOS Este curso está dirigido a todos los que comienzan a trabajar con SQL Server 2012. De una forma rápida y concisa obtendrá el conocimiento necesario para

Más detalles

Diseño de algoritmos paralelos

Diseño de algoritmos paralelos PROGRAMACIÓN CONCURRENTE TEMA 7 Diseño de algoritmos paralelos ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA INFORMÁTICA DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN DISEÑO DE ALGORITMOS PARALELOS - TEMA 7.2 Algoritmos

Más detalles

El conjunto de datos obtenidos en un estudio se pueden describir en base a tres elementos esenciales:

El conjunto de datos obtenidos en un estudio se pueden describir en base a tres elementos esenciales: Análisis de datos en los estudios epidemiológicos Análisis de datos en los estudios epidemiológicos ntroducción En este capitulo, de continuación de nuestra serie temática de formación en metodología de

Más detalles

UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEPARTAMENTO DE INGENIERÍA INDUSTRIAL CONTROL #3

UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEPARTAMENTO DE INGENIERÍA INDUSTRIAL CONTROL #3 UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEPARTAMENTO DE INGENIERÍA INDUSTRIAL CURSO : IN47A GESTIÓN DE OPERACIONES PROFESOR : A. SAURÉ A. WEINTRAUB AUXILIARES : J. PASSI J. RODRÍGUEZ

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio

Más detalles

UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS TÉCNICO EN CONTROL DE LA CALIDAD

UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS TÉCNICO EN CONTROL DE LA CALIDAD UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS TÉCNICO EN CONTROL DE LA CALIDAD CICLO: I-2015 GUIA DE LABORATORIO # 1 Nombre de la Práctica: Control Estadístico parte I Entorno Lugar de Ejecución:

Más detalles

Figura 1. Sistema CRAB. Configuración tipo 1. Figura 2. Sistema CRAB. Configuración tipo 2. Paso celosía.

Figura 1. Sistema CRAB. Configuración tipo 1. Figura 2. Sistema CRAB. Configuración tipo 2. Paso celosía. Verificación mediante el método de los elementos finitos del comportamiento significativo carga-desplazamiento del sistema de andamios tipo CRAB de acuerdo a la normativa vigente: UNE EN 12810-1, UNE EN

Más detalles

8. DISEÑO DE LA MATRIZ DE IMPACTO PARA DETERMINAR LAS ÁREAS CRÍTICAS EN EL PROCESO DE ATENCIÓN MÉDICA AMBULATORIA

8. DISEÑO DE LA MATRIZ DE IMPACTO PARA DETERMINAR LAS ÁREAS CRÍTICAS EN EL PROCESO DE ATENCIÓN MÉDICA AMBULATORIA 8. DISEÑO DE LA MATRIZ DE IMPACTO PARA DETERMINAR LAS ÁREAS CRÍTICAS EN EL PROCESO DE ATENCIÓN MÉDICA AMBULATORIA El proceso de control se fundamenta en el principio de excepción, que determina la imposibilidad

Más detalles

Lección 49. Funciones I. Definición

Lección 49. Funciones I. Definición Lección 49 Funciones I Definición Sean A y B conjuntos. Una función f de A en B es una regla que asigna a cada elemento x A exactamante un elemento y B. El elemento y B, se denota por f (x), y decimos

Más detalles

Bloque temático: Sistemas de Reconocimiento de Patrones

Bloque temático: Sistemas de Reconocimiento de Patrones Bloque temático: Sistemas de Reconocimiento de Patrones 1 Sistemas de Reconocimiento de Patrones PRACTICAS 6)Estudio de ejemplos en Matlab 7)Adquisición de imágenes reales: generación de una librería de

Más detalles

ECUACIONES DIFERENCIALES AUTÓNOMAS Y ESTABILIDAD DE LOS PUNTOS DE EQUILIBRIO Complemento sobre Ecuaciones Diferenciales para los cursos de Cálculo

ECUACIONES DIFERENCIALES AUTÓNOMAS Y ESTABILIDAD DE LOS PUNTOS DE EQUILIBRIO Complemento sobre Ecuaciones Diferenciales para los cursos de Cálculo ECUACIONES DIFERENCIALES AUTÓNOMAS Y ESTABILIDAD DE LOS PUNTOS DE EQUILIBRIO Complemento sobre Ecuaciones Diferenciales para los cursos de Cálculo Eleonora Catsigeras * 17 de Noviembre 2013 Notas para

Más detalles

Tema 3: Sistemas Combinacionales

Tema 3: Sistemas Combinacionales Ejercicios T3: Sistemas Combinacionales Fundamentos de Tecnología de Computadores Tema 3: Sistemas Combinacionales 1. Analizar el siguiente circuito indicando la expresión algebraica que implementa, la

Más detalles

PRÁCTICA 4 ESTUDIO DEL RESORTE

PRÁCTICA 4 ESTUDIO DEL RESORTE INGENIERÍA QUÍICA 1 er curso FUNDAENTOS FÍSICOS DE LA INGENIERÍA PRÁCTICA 4 ESTUDIO DEL RESORTE Departamento de Física Aplicada Escuela Politécnica Superior de la Rábida. 1 IV. Estudio del resorte 1. Objetivos

Más detalles

Diferenciabilidad, Regla de la Cadena y Aplicaciones

Diferenciabilidad, Regla de la Cadena y Aplicaciones Universidad Técnica Federico Santa María Departamento de Matemática Matemática III Guía Nº3 Primer Semestre 015 Diferenciabilidad, Regla de la Cadena y Aplicaciones Problemas Propuestos 1. Sea f : R R

Más detalles

Facultad de Ingeniería Programa Analítico

Facultad de Ingeniería Programa Analítico Programa Analítico ASIGNATURA: Análisis Matemático III PLAN DE ESTUDIOS: Ajuste 2013 ANO ACADEMICO: 2013 CARRERA/S : Ingeniería Civil Electromecánica Industrial - Electrónica PROFESOR a CARGO: Mg. Lic.

Más detalles

EL LÍMITE AL INFINITO EN EL CÁLCULO DE ÁREAS BAJO UNA CURVA

EL LÍMITE AL INFINITO EN EL CÁLCULO DE ÁREAS BAJO UNA CURVA EL LÍMITE AL INFINITO EN EL CÁLCULO DE ÁREAS BAJO UNA CURVA Sugerencias al Profesor: Comentar que uno de los problemas fundamentales que dieron origen al Cálculo Integral es el de acumulación, el cual

Más detalles

ESCUELA COMERCIAL CÁMARA DE COMERCIO EXTENSIÓN DE ESTUDIOS PROFESIONALES MAESTRÍA EN ADMINISTRACIÓN

ESCUELA COMERCIAL CÁMARA DE COMERCIO EXTENSIÓN DE ESTUDIOS PROFESIONALES MAESTRÍA EN ADMINISTRACIÓN CICLO, ÁREA O MÓDULO: TERCER CUATRIMESTRE OBJETIVO GENERAL DE LA ASIGNATURA: Al termino del curso el alumno efectuara el análisis ordenado y sistemático de la Información, a través del uso de las técnicas

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos Isaac Musat Hervás 22 de mayo de 213 Capítulo 11 Año 21 11.1. Modelo 21 - Opción A Problema 11.1.1 3 puntos Dada la función: fx

Más detalles

Componentes clave. A. Énfasis en los términos riesgo y eficiencia

Componentes clave. A. Énfasis en los términos riesgo y eficiencia Componentes clave A. Énfasis en los términos riesgo y eficiencia B. Adaptación hacia un punto de vista más suavizado en términos de diseño y endurecido en cuanto a elementos de enfoque a procesos C. Eliminación

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #16. f : A! B x 7! y = f(x):

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #16. f : A! B x 7! y = f(x): MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #16 Función Sean A y B conjuntos. Una función f de A en B es una regla que asigna a cada elemento x 2 A exactamante un elemento

Más detalles

1. Examen 21/Junio/1994. Para la inversión de una matriz cuadrada A de orden n n, cuya inversa existe, se ha definido la siguiente iteración

1. Examen 21/Junio/1994. Para la inversión de una matriz cuadrada A de orden n n, cuya inversa existe, se ha definido la siguiente iteración CAPÍTULO 5 EJERCICIOS RESUELTOS: MÉTODOS ITERATIVOS PARA ECUACIONES LINEALES Ejercicios resueltos 1 1. Examen 21/Junio/1994. Para la inversión de una matriz cuadrada A de orden n n cuya inversa existe

Más detalles

Premisas Pasos a seguir Ejemplos Resumen del Proceso Conclusiones

Premisas Pasos a seguir Ejemplos Resumen del Proceso Conclusiones Premisas Pasos a seguir Ejemplos Resumen del Proceso Conclusiones Premisas Lo primero que hay que tener en cuenta cuando hablamos de nuestros Indicadores o de cualquier otro que haya en el mercado es que,

Más detalles

PRUEBAS DE SELECTIVIDAD. Función real de variable real. Continuidad.

PRUEBAS DE SELECTIVIDAD. Función real de variable real. Continuidad. MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II IES Salvador Serrano - DtoMatemáticas (Daniel García) 01 / 13 PRUEBAS DE SELECTIVIDAD Función real de variable real Continuidad EJERCICIO 1- Se sabe que

Más detalles

-53- REEMPLAZO O CAMBIO DE EQUIPOS FORESTALES USADOS EN BOSQUES TROPICALES. 7.1 Conceptos básicos sobre Política de reemplazo.

-53- REEMPLAZO O CAMBIO DE EQUIPOS FORESTALES USADOS EN BOSQUES TROPICALES. 7.1 Conceptos básicos sobre Política de reemplazo. 4Í..-"*.i!.-r^fL S^3l^r"^^^T - - -. iiuja _pi I I I,1^ -53- VII. REEMPLAZO O CAMBIO DE EQUIPOS FORESTALES USADOS EN BOSQUES TROPICALES. 7.1 Conceptos básicos sobre Política de reemplazo. Durante la última

Más detalles

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA INGENIERIA EN COMUNICACIONES Y ELECTRÓNICA ACADEMIA DE COMPUTACIÓN

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA INGENIERIA EN COMUNICACIONES Y ELECTRÓNICA ACADEMIA DE COMPUTACIÓN INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA UNIDAD CULHUACAN INGENIERIA EN COMUNICACIONES Y ELECTRÓNICA ACADEMIA DE COMPUTACIÓN LABORATORIO DE CIRCUITOS DIGITALES

Más detalles

file://d:\trabajo\boletin\anteriores\84.htm

file://d:\trabajo\boletin\anteriores\84.htm Página 1 de 5 Si usted no puede visualizar correctamente este mensaje, presione aquí Boletín técnico de INDISA S.A. Medellín, 18 de junio de 2010 No.84 EL CÁLCULO DE LA CONFIABILIDAD EN EL MANTENIMIENTO

Más detalles

Ingeniería en Sistemas Informáticos

Ingeniería en Sistemas Informáticos Facultad de Tecnología Informática Ingeniería en Sistemas Informáticos Matéria: Electromagnetismo- Estado sólido I Trabajo Práctico N 2 Circuitos Eléctricos Ley de Ohm Alumnos: MARTINO, Ariel GARIGLIO,

Más detalles

Capítulo 11. Política monetaria y fiscal

Capítulo 11. Política monetaria y fiscal Capítulo 11 Política monetaria y fiscal 2 Introducción La política monetaria y la política fiscal son 2 instrumentos de la política macroeconómica a los que pueden recurrir los gobiernos para intentar

Más detalles

Carmen Puerta Juan Antonio Rivas. www.argitalpenak.ehu.es ARGITALPEN ZERBITZUA SERVICIO EDITORIAL ISBN: 978-84-9860-439-9

Carmen Puerta Juan Antonio Rivas. www.argitalpenak.ehu.es ARGITALPEN ZERBITZUA SERVICIO EDITORIAL ISBN: 978-84-9860-439-9 Exámenes resueltos de Matemáticas para Economistas IV economistas Carmen Puerta Juan Antonio Rivas ARGITALPEN ZERBITZUA SERVICIO EDITORIAL www.argitalpenak.ehu.es ISBN: 978-84-9860-439-9 Exámenes resueltos

Más detalles
Sitemap