UNIDAD 1 PLAN DE APOYO


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "UNIDAD 1 PLAN DE APOYO"

Transcripción

1 UNIDAD 1 PLAN DE APOYO NÚMEROS ENTEROS 7 Básico Autor Thomas Bustos Ortiz I

2 INDICE TAREAS CODICIONES FICHAS Ordenan y comparan números naturales Suman y restan de números naturales Conocen números enteros Ordenan y comparan números enteros Utilizando la recta numérica, en cantidades 1 positivas mayores que 100 y menores que 1000 No utilizando la recta numérica, en cantidades 2 positivas mayores que 100 y menores que 1000 Utilizando los signos <, > o =, en cantidades 3 mayores que 100 y menores que 1000 Sucesor y antecesor en cantidades mayores 4 que 100 y menores que 1000 Utilizando la recta numérica en cantidades 5 mayores que 1 y menores que 10 Sin paréntesis y utilizando la recta numérica, en 6 cantidades mayores que 1y menores que 10. Con paréntesis y utilizando la recta numérica, 7 en cantidades mayores que 1 y menores que 10. Utilizando fichas de colores, en cantidades 8 menores que 10. Utilizando la recta numérica, en cantidades 9 menores que 10 Restando números enteros, donde el 10 sustraendo es mayor que el minuendo. En la vida cotidiana. 11 Aplicando el valor absoluto 12 Utilizando la recta numérica, en cantidades 13 positivas menores que 10 Utilizando los signos <, > o =, en cantidades positivas menores que Sucesor y antecesor en cantidades positivas menores que 100 II

3 1 NÚMEROS ENTEROS 7º 1. Ordena los siguientes números de menor a mayor. a) 465; 523; 235; 654; 645; 253; 653; 526; 546 b) 587; 564; 598; 589; 543; 528; 509; 506; 548 III

4 2 NÚMEROS ENTEROS 7º Ordena la secuencia de mayor a menor. 712; 724; 780; 795; 786; 719; 725; 781; 777 Yo he ordenado de mayor a menor las siguientes cantidades de esta forma: 795; 786; 780; 781; 777; 725; 724; 719; 712 a.- Cuál es el error del orden que cometió Niki? b.- Ordena correctamente de mayor a menor? IV

5 3 NÚMEROS ENTEROS 7º 1. Compara los siguientes números y escribe los signos <, > o =, según corresponda: a) b) c) d) e) f) g) h) i) Por qué es mayor que ? V

6 4 NÚMEROS ENTEROS 7º Responde la pregunta que a Niki le inquieta Cuál es el sucesor de 256? y el antecesor? a) 258 b) 255 c) 254 d) 257 Cómo lo supiste? VI

7 5 NÚMEROS ENTEROS 7º Resuelve las siguientes adiciones y sustracciones utilizando la recta numérica. Observa el ejemplo Respuesta: 5 a) Respuesta: b) Respuesta: c) 7-1 Respuesta: VII

8 6 NÚMEROS ENTEROS 7º Resuelve las siguientes operaciones con una recta numérica. Guíate por el ejemplo Respuesta: 8 a) Respuesta: b) Respuesta: c) Respuesta: VIII

9 7 NÚMEROS ENTEROS 7º Resuelve las siguientes operaciones con una recta numérica. Guíate por el ejemplo (8 6) Respuesta 10 a) (7 6) Respuesta b) 1+ (7 + 7) 6 Respuesta c) 6 - (1 + 7) + 6 Respuesta IX

10 8 NÚMEROS ENTEROS 7º Materiales: Fichas de colores (rojo y azul) En pareja, realiza las siguientes acciones: Comienza un o una estudiante colocando en la mesa una cantidad de fichas de un determinado color. Por turnos, el compañero coloca una cantidad diferente de fichas del color opuesto. Luego sacan las fichas que forman pareja con la ficha de color opuesto.. Luego el compañero o compañera escoge una nueva cantidad de fichas de un determinado color, para luego el compañero colocar una cantidad diferente de fichas del color opuesto, y así sucesivamente realizando diferentes sustracciones. Al finalizar el juego, junto con tu pareja responde las siguientes preguntas: a) Al juntar 7 fichas azules y 6 fichas rojas Cuántas fichas y cuales quedaron? Representa la sustracción y la respuesta. b) Al juntar 5 fichas rojas y 9 fichas azules Cuántas fichas y cuales quedaron? Representa la sustracción y la respuesta. c) Al juntar 4 fichas azules y 8 fichas rojas Cuántas fichas y cuales quedaron? Representa la sustracción y la respuesta. d) Al juntar 7 fichas rojas y 2 fichas azules Cuántas fichas y cuales quedaron? Representa la sustracción y la respuesta. X

11 9 NÚMEROS ENTEROS 7º Materiales: Fichas de colores (rojo y azul) Números enteros y recta numérica. Lo que aprendí en la ficha anterior es que una sustracción donde el minuendo es menor que el sustraendo no tiene solución en los números naturales, porque su resultado es un número negativo, que es siempre menor que cero. Ejemplo: Positivo cuatro (4) menos siete ( 7) da como resultado negativo (-3) 1.- Determina números negativos en la recta numérica a) 8 9 Respuesta b) Respuesta c) Respuesta XI

12 10 NÚMEROS ENTEROS 7º Realice lo siguiente: 1. Felipe tiene, en su cuenta, $ 4000 pero debe pagarle $ 5000 a María y los retira en un cajero. Al imprimir el saldo le sale $ Cómo supiste la respuesta? 2. La señora Juana vende cubos de helado que prepara en su casa. Si al poner los cubos en el congelador su temperatura es de 24 o C y suponiendo que esta disminuye cada hora en 3 o C, Qué temperatura tendrán los cubos al transcurrir 9 horas?, completa la tabla como la siguiente: Cómo supiste la respuesta? XII

13 11 NÚMEROS ENTEROS 7º Números enteros en la vida cotidiana. Los números negativos se utilizan en diversos contextos, como la representación de deudas, profundidades bajo el nivel del mar y temperaturas bajo cero, entre otros. Observa algunos ejemplos: La cuenta de José en el banco registra un saldo de $ En Punta Choros hay un barco hundido, llamado Lynch, que naufragó en 1912 y está aproximadamente a 30 metros. En las situaciones presentadas se utilizan números con un signo delante, lo que significa que los valores son negativos, o sea, menores que cero. 1. Observa la ilustración. Qué elementos se encuentran sobre el nivel del mar y cuáles por debajo? a) Si el buzo está a 110 m de profundidad, es correcto decir que está a 110 m?, por qué? b) Si la gaviota vuela a una altura aproximada de 200 m, es correcto decir que está a +200 m?, por qué? 2. Expresa usando números positivos o negativos las siguientes situaciones: a) Un termómetro marca 7 C bajo cero. b) El mar Mediterráneo tiene una profundidad máxima de 5000 m. c) En 1864 se creó la Cruz Roja. d) Roberto tiene una deuda de $ e) El pozo tiene 14 m de profundidad. f) El monte Aconcagua tiene 6959 m de altura sobre el nivel del mar. XIII

14 12 NÚMEROS ENTEROS 7º Valor absoluto 1. Observa la posición del avión y del submarino que aparecen en el dibujo. a. Cuál es la distancia entre el avión y el nivel del mar? b. Cuál es la distancia entre el submarino y el nivel del mar? c. Cómo son las distancias que hay entre cada objeto y el nivel del mar? XIV

15 2. Determina los siguientes valores absolutos: a) 10 = e) 23 = b) 8 = f) 0 = c) 23 = g) 53 = d) 2 = h) 35 = 3. Un hombre nació el año 8 a. C. y una mujer el año 17 a. C. a) Cuál de los dos nació más próximo al nacimiento de Cristo? b) Qué edad tiene cada uno a la fecha en que nace Cristo? XV

16 13 NÚMEROS ENTEROS 7º 1.- Escribe los números que faltan en la recta numérica Gradúala en forma conveniente para cada caso y ubica en ella los siguientes números enteros: a) 3; 8 ; 1; 7; 12 0 Por qué los ubicaste en ese orden? b) 2; 3; 4 ; 5; 6 0 Por qué los ubicaste en ese orden? XVI

17 3. Completa escribiendo mayor o menor, según corresponda: a) Cualquier número negativo es que un número positivo. b) El cero es que cualquier número negativo. c) El valor absoluto de un número es siempre o igual que el mismo número. 4.- Observa la posición del buzo y de la red que aparece en el dibujo. Ambos se encuentran bajo el nivel del mar. Pero cuál de ellos está más cerca de la superficie? En el dibujo, podemos representar gráficamente las distancias entre el buzo, la red y la superficie del mar con una recta numérica, donde el cero corresponde al nivel del mar. * Cuál es la distancia entre el buzo y el nivel del mar? * Cuál es la distancia entre la red y el nivel del mar? * El buzo está a menor o mayor distancia que la red del nivel del mar? * Qué número es mayor: 1 o 3? Justifica. XVII

18 14 NÚMEROS ENTEROS 7º 1. Completa con los signos < ó >, según corresponda. Justifica a) 5 7 b) 4 4 c) 3 +2 d) Anota el antecesor o el sucesor de cada cantidad. De ser necesario puedes apoyarte en la recta numérica. ANTECESOR NÚMERO SUCESOR XVIII

Guía N 3: Números Enteros

Guía N 3: Números Enteros NOMBRE CURSO Guía N 3: Números Enteros FECHA ITEM I. En las figuras siguientes marca con un punto de color cada una de las etapas de cada caso. ITEM II. Compara los siguientes números y escribe los signos

Más detalles

SIGNIFICADO DE LOS NÚMEROS ENTEROS: POSITIVOS Y NEGATIVOS

SIGNIFICADO DE LOS NÚMEROS ENTEROS: POSITIVOS Y NEGATIVOS OBJETIVO 1 SIGNIICADO DE LOS NÚMEROS ENTEROS: POSITIVOS Y NEGATIVOS NOMBRE: CURSO: ECHA: NÚMEROS NEGATIVOS En nuestra vida diaria observamos, leemos y decimos expresiones del tipo: a) Hemos dejado el coche

Más detalles

CAPÍTULO 4: NÚMEROS ENTEROS. TEORÍA. Matemáticas 1º y 2º de ESO

CAPÍTULO 4: NÚMEROS ENTEROS. TEORÍA. Matemáticas 1º y 2º de ESO 24 CAPÍTULO 4: NÚMEROS ENTEROS.. Matemáticas 1º y 2º de ESO 1. NÚMEROS ENTEROS 1.1. Números positivos, negativos y cero Existen ocasiones de la vida cotidiana en que es preciso usar números distintos de

Más detalles

5 Números enteros OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Números negativos y positivos. Números enteros.

5 Números enteros OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Números negativos y positivos. Números enteros. 826464 _ 0289-0300.qxd 12/2/07 09:47 Página 289 Números enteros INTRODUCCIÓN El concepto de número entero negativo implica la inclusión en el sistema numérico de unos números que superan el concepto de

Más detalles

LOS NÚMEROS ENTEROS NÚMEROS POSITIVOS Y NÚMEROS NEGATIVOS

LOS NÚMEROS ENTEROS NÚMEROS POSITIVOS Y NÚMEROS NEGATIVOS LOS NÚMEROS ENTEROS NÚMEROS POSITIVOS Y NÚMEROS NEGATIVOS Para indicar las temperaturas por encima de cero ponemos delante del número el signo más y a las que son por debajo de cero, el signo menos. Para

Más detalles

1. ESQUEMA - RESUMEN Página 2. 2. EJERCICIOS DE INICIACIÓN Página 12. 3. EJERCICIOS DE DESARROLLO Página 14. 4. EJERCICIOS DE AMPLIACIÓN Página 15

1. ESQUEMA - RESUMEN Página 2. 2. EJERCICIOS DE INICIACIÓN Página 12. 3. EJERCICIOS DE DESARROLLO Página 14. 4. EJERCICIOS DE AMPLIACIÓN Página 15 1. ESQUEMA - RESUMEN Página 2 2. EJERCICIOS DE INICIACIÓN Página 12 3. EJERCICIOS DE DESARROLLO Página 14 4. EJERCICIOS DE AMPLIACIÓN Página 15 5. EJERCICIOS DE REFUERZO Página 6. EJERCICIOS RESUELTOS

Más detalles

Representación de enteros.

Representación de enteros. Representación de enteros. 1.- Debes representar en una recta los pares de números enteros que a continuación se indican. Para ello debes dividir la recta en las divisiones necesarias para que la representación

Más detalles

2º ESO. matemáticas IES Montevil tema 2: NÚMEROS ENTEROS curso 2010/2011 2 34 0-7 -1 5 4-12 10 2 0-7 00 0 15

2º ESO. matemáticas IES Montevil tema 2: NÚMEROS ENTEROS curso 2010/2011 2 34 0-7 -1 5 4-12 10 2 0-7 00 0 15 nombre: apellidos: números enteros El conjunto de los números enteros es el que está formado por los números positivos y negativos que no tienen decimales, es decir que son enteros. Los números enteros

Más detalles

Operador = < > Se lee Igual a Distinto a Menor que Menor o igual que Mayor que Mayor o igual que

Operador = < > Se lee Igual a Distinto a Menor que Menor o igual que Mayor que Mayor o igual que TEORÍA 1. NÚMEROS ENTEROS * El conjunto de los números enteros está formado por el conjunto de los números naturales N = {0, 1, 2, 3, 4, 5...} y los negativos { 1, 2, 3, 4, 5...}. Se representa con el

Más detalles

TEMA 10. EL CONJUNTO DE LOS NÚMEROS ENTEROS

TEMA 10. EL CONJUNTO DE LOS NÚMEROS ENTEROS TEMA 10. EL CONJUNTO DE LOS NÚMEROS ENTEROS 1. LOS NÚMEROS ENTEROS Hasta ahora sólo has conocido el conjunto de los números naturales (N), que está formado por todos los números positivos desde el cero

Más detalles

LOS NÚMEROS ENTEROS QUÉ ES UN NÚMERO ENTERO? VALOR ABSOLUTO EL OPUESTO DE UN NÚMERO ENTERO OPERACIONES CON ENTEROS ORDENACIÓN DE NÚMEROS ENTEROS

LOS NÚMEROS ENTEROS QUÉ ES UN NÚMERO ENTERO? VALOR ABSOLUTO EL OPUESTO DE UN NÚMERO ENTERO OPERACIONES CON ENTEROS ORDENACIÓN DE NÚMEROS ENTEROS LOS NÚMEROS ENTEROS QUÉ ES UN NÚMERO ENTERO? VALOR ABSOLUTO EL OPUESTO DE UN NÚMERO ENTERO ORDENACIÓN DE NÚMEROS ENTEROS OPERACIONES CON ENTEROS Suma Resta Multiplicación División Potencia JERARQUÍA RESOLUCIÓN

Más detalles

1) Indique los primeros elementos de los siguientes conjuntos numéricos: Números Naturales: IN = { Números Cardinales: IN o = { 0,1,2,3,4,5,6,7,...

1) Indique los primeros elementos de los siguientes conjuntos numéricos: Números Naturales: IN = { Números Cardinales: IN o = { 0,1,2,3,4,5,6,7,... Clase-04 Temas: Operatoria entre números naturales (IN) y enteros (Z), múltiplos, divisores, mínimo común múltiplo (M.C.M.) y máximo común divisor (M.C.D.). 1) Indique los primeros elementos de los siguientes

Más detalles

Números enteros. 1. En una recta horizontal, se toma un punto cualquiera que se señala como cero.

Números enteros. 1. En una recta horizontal, se toma un punto cualquiera que se señala como cero. Números enteros Son el conjunto de números naturales, sus opuestos (negativos) y el cero. Se dividen en tres partes: enteros positivos o números naturales (+1, +2, +3,...), enteros negativos (-1, -2, -3,.)

Más detalles

I.E.S. CUADERNO Nº 3 NOMBRE: FECHA: / / Los números enteros

I.E.S. CUADERNO Nº 3 NOMBRE: FECHA: / / Los números enteros Los números enteros Contenidos 1. Los números enteros Introducción La recta numérica Valor absoluto Ordenar enteros Opuesto de un número entero 2. Suma y diferencia de enteros Suma de dos enteros Suma

Más detalles

CONSTITUCIONES MISIONEROS CLARETIANOS

CONSTITUCIONES MISIONEROS CLARETIANOS CONSTITUCIONES MISIONEROS CLARETIANOS PARTE PRIMERA Capítulo I Capítulo II Capítulo III Capítulo IV Capítulo V Capítulo VI Capítulo VII Capítulo VIII PARTE SEGUNDA Capítulo IX Capítulo

Más detalles

NÚMEROS ENTEROS. En la recta numérica se pueden representar los números naturales, el cero y los números negativos.

NÚMEROS ENTEROS. En la recta numérica se pueden representar los números naturales, el cero y los números negativos. NÚMEROS ENTEROS El conjunto de los números enteros está formado por: Los números positivos (1, 2, 3, 4, 5, ) Los números negativos ( El cero (no tiene signo) Recta numérica En la recta numérica se pueden

Más detalles

Los números enteros. 1. Los números negativos

Los números enteros. 1. Los números negativos 3 Los números enteros 1. Los números negativos a) Alejandro ha dejado el coche en el segundo sótano de un aparcamiento subterráneo. Al volver por el coche, ve los botones 0, 1 y 2 en el ascensor. En qué

Más detalles

Número entero. Los números enteros no tienen parte decimal. 783 y 154 son números enteros. 45,23 y 34/95 no son números enteros

Número entero. Los números enteros no tienen parte decimal. 783 y 154 son números enteros. 45,23 y 34/95 no son números enteros Número entero Resta con negativos. La resta de dos números naturales no es un número natural cuando el sustraendo es mayor que el minuendo, sino que su valor es negativo: en la imagen, sólo pueden sustraerse

Más detalles

qwertyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmq

qwertyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmq qwertyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmq LOS NÚMEROS ENTEROS wertyuiopasdfghjklzxcvbnmqwertyui Introducción

Más detalles

J E F A D E L D E P A R T A M E N T O D E M E D I C I N A V E T E R I N A R I A

J E F A D E L D E P A R T A M E N T O D E M E D I C I N A V E T E R I N A R I A U N I V E R S I D A D D E E L S A L V A D O R F A C U L T A D D E C I E N C I A S A G R O N O M I C A S D E T E R M I N A C I Ó N D E A F L A T O X I N A S E N M A Í Z I M P O R T A D O P A R A E L A B

Más detalles

UNIDAD DIDÁCTICA #2. Números reales -------------------------------------------------------------------------------------------------2

UNIDAD DIDÁCTICA #2. Números reales -------------------------------------------------------------------------------------------------2 UNIDAD DIDÁCTICA #2 INDICE PÁGINA Números reales -------------------------------------------------------------------------------------------------2 Potenciación -----------------------------------------------------------------------------------------------------3

Más detalles

Medida de ángulos. Nombre Curso Fecha

Medida de ángulos. Nombre Curso Fecha Matemáticas 2. ESO Unidad 4 Ficha 1 Medida de ángulos Un grado es lo que mide el ángulo que resulta de dividir un ángulo recto en 90 partes iguales. Se representa por Ángulo recto = 90 Un minuto es lo

Más detalles

a) ( 3) b) ( 2) c) ( 1) d) ( 5) a) ( 2) 3 b) ( 4) : 2 c) ( 2) : ( 4) a) ( 2) 3 = 4 3 = 12 b) ( 4) : 2 = 64 : 8 = 8 c) ( 2) : ( 4) = 32 : ( 4) = 8

a) ( 3) b) ( 2) c) ( 1) d) ( 5) a) ( 2) 3 b) ( 4) : 2 c) ( 2) : ( 4) a) ( 2) 3 = 4 3 = 12 b) ( 4) : 2 = 64 : 8 = 8 c) ( 2) : ( 4) = 32 : ( 4) = 8 Ejercicios de potencias y raíces con soluciones 1 Sin realizar las potencias, indica el signo del resultado: a) ( ) 4 b) ( ) 10 c) ( 1) 7 d) ( 5) 9 a) Positivo por tener exponente par. b) Positivo por

Más detalles

Los números enteros. > significa "mayor que". Ejemplo: 58 > 12 < significa "menor que". Ejemplo: 3 < 12 Cualquier número positivo siempre es mayor

Los números enteros. > significa mayor que. Ejemplo: 58 > 12 < significa menor que. Ejemplo: 3 < 12 Cualquier número positivo siempre es mayor Los números enteros Los números enteros Los números enteros son aquellos que permiten contar tanto los objetos que se tienen, como los objetos que se deben. Enteros positivos: precedidos por el signo +

Más detalles

Teoría de Conjuntos y Conjuntos Numéricos

Teoría de Conjuntos y Conjuntos Numéricos Teoría de Conjuntos y Conjuntos Numéricos U N I V E R S I D A D D E P U E R T O R I C O E N A R E C I B O D E P A R T A M E N T O DE M A T E M Á T I C A S P R O F A. Y U I T Z A T. H U M A R Á N M A R

Más detalles

Representación de los números naturales

Representación de los números naturales Números naturales El conjunto de los números naturales se representa por la letra, y está formado por: N = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,...} Los números naturales sirven para contar los elementos de un

Más detalles

Números Enteros. 1º de ESO 1º ESO CAPÍTULO 4: NÚMEROS ENTEROS

Números Enteros. 1º de ESO 1º ESO CAPÍTULO 4: NÚMEROS ENTEROS 64 1º ESO CAPÍTULO 4: NÚMEROS ENTEROS Ilustraciones: Banco de imágenes del INTEF 65 Índice 1. NÚMEROS ENTEROS 1.1. NÚMEROS POSITIVOS, NEGATIVOS Y CERO 1.2. DONDE APARECEN LOS NÚMEROS NEGATIVOS 1.3. QUÉ

Más detalles

Guía 1: Fracciones decimales

Guía 1: Fracciones decimales Guía : Fracciones decimales Las fracciones decimales son aquellas que tienen como denominador un múltiplo de (, 0, 000) y por numerador un número cualquiera. Los décimos, centésimos y milésimos se pueden

Más detalles

Trabajo Práctico N 1: Números enteros y racionales

Trabajo Práctico N 1: Números enteros y racionales Matemática año Trabajo Práctico N 1: Números enteros y racionales Problemas de repaso: 1. Realiza las siguientes sumas y restas: a. 1 (-) = b. 7 + (-77) = c. 1 (-6) = d. 1 + (-) = e. 0 (-0) + 1 = f. 0

Más detalles

TIRAS DE FRACCIONES. Alumno: Fecha. Señala cada parte de la tira con la fracción que corresponda. Hemos hecho los dos primeros para que te fijes:

TIRAS DE FRACCIONES. Alumno: Fecha. Señala cada parte de la tira con la fracción que corresponda. Hemos hecho los dos primeros para que te fijes: Señala cada parte de la tira con la fracción que corresponda. Hemos hecho los dos primeros para que te fijes: En cuántas partes iguales está dividida la tira? Qué fracción es cada parte? En cuántas partes

Más detalles

1. LOS NÚMEROS DE TRES CIFRAS

1. LOS NÚMEROS DE TRES CIFRAS 1. LOS NÚMEROS DE TRES CIFRAS Los números son necesarios para contar objetos, para realizar compras, para decir la hora, para expresar la edad de una persona, para numerar las páginas de un libro, etc.

Más detalles

LibrosMareaVerde.tk Ilustraciones: Banco de Imágenes de INTEF

LibrosMareaVerde.tk Ilustraciones: Banco de Imágenes de INTEF 30 CAPÍTULO 4: NÚMEROS ENTEROS 1. NÚMEROS ENTEROS 1.1. Números positivos, negativos y cero Existen ocasiones de la vida cotidiana en que es preciso usar números distintos de los naturales, números positivos

Más detalles

TEMA 1: NÚMEROS ENTEROS

TEMA 1: NÚMEROS ENTEROS Números enteros 1 OBJETIVO 1: Significado de los números enteros TEMA 1: NÚMEROS ENTEROS 1. Expresa las siguientes situaciones con números enteros a) El año 2500 a.c... b) Pasear por la orilla del mar...

Más detalles

SISTEMA DE NUMERACIÓN DECIMAL

SISTEMA DE NUMERACIÓN DECIMAL SISTEMA DE NUMERACIÓN DECIMAL Se llama decimal o de base diez porque se utilizan diez símbolos para representar todos los números. Los diez símbolos, cifras son: 0, 1, 2,3, 4, 5, 6, 7, 8, 9 La relación

Más detalles

Números enteros EJERCICIOS

Números enteros EJERCICIOS Números enteros EJERCICIOS 001 Expresa con un número. a) Debo cuatro euros a mi amigo. b) Estamos a cinco grados bajo cero. c) No me queda nada. a) -4 b) -5 C c) 0 002 Completa los números que faltan.

Más detalles

Por ejemplo, la necesidad de representar el dinero adeudado, temperatura bajo cero, profundidades con respecto al nivel del mar, etc.

Por ejemplo, la necesidad de representar el dinero adeudado, temperatura bajo cero, profundidades con respecto al nivel del mar, etc. NÚMEROS ENTEROS 1. LOS NÚMEROS ENTEROS. Con los números naturales no era posible realizar diferencias donde el minuendo era menor que el sustraendo, pero en la vida nos encontramos con operaciones de este

Más detalles

Los números naturales

Los números naturales Los números naturales Los números naturales Los números naturales son aquellos que sirven para contar. Se suelen representar utilizando las cifras del 0 al 9. signo suma o resultado Suma: 9 + 12 = 21 sumandos

Más detalles

Enteros (páginas 294 298)

Enteros (páginas 294 298) A NOMRE FECHA PERÍODO Enteros (páginas 294 298) Un entero es cualquier número del siguiente conjunto de números enteros y sus opuestos: { 3, 2, 1, 0, 1, 2, 3, }. Los enteros mayores que cero son enteros

Más detalles

Tabla de Derivadas. Función Derivada Función Derivada. f (x) n+1. f (x) y = f (x) y = ln x. y = cotg f (x) y = ( 1 cotg 2 f (x)) f (x) = f (x)

Tabla de Derivadas. Función Derivada Función Derivada. f (x) n+1. f (x) y = f (x) y = ln x. y = cotg f (x) y = ( 1 cotg 2 f (x)) f (x) = f (x) Matemáticas aplicadas a las CCSS - Derivadas Tabla de Derivadas Función Derivada Función Derivada y k y 0 y y y y y f ) y f ) f ) y n y n n y f ) n y n f ) n f ) y y n y y f ) y n n+ y f ) n y f ) f )

Más detalles

SESIÓN 1 PRE-ALGEBRA, CONCEPTOS Y OPERACIONES ARITMÉTICAS BÁSICAS

SESIÓN 1 PRE-ALGEBRA, CONCEPTOS Y OPERACIONES ARITMÉTICAS BÁSICAS SESIÓN 1 PRE-ALGEBRA, CONCEPTOS Y OPERACIONES ARITMÉTICAS BÁSICAS I. CONTENIDOS: 1. Introducción: de la aritmética al álgebra. 2. Números reales y recta numérica. 3. Operaciones aritméticas básicas con

Más detalles

NÚMEROS ENTEROS. OPERACIONES EN Z + 7 + + 8= + 15

NÚMEROS ENTEROS. OPERACIONES EN Z + 7 + + 8= + 15 LICEO DE APLICACIÓN DEPTO MATEMÁTICA GUÍA DE NÚMEROS ENTEROS ( COMPLEMENTARIA) Nombre y Apellidos: Contenidos: - Operatoria con los números enteros. - Operaciones combinadas. - Resolución de problemas.

Más detalles

UNIDAD 7. LOS NÚMEROS ENTEROS

UNIDAD 7. LOS NÚMEROS ENTEROS UNIDAD 7. LOS NÚMEROS ENTEROS 1. LOS NÚMEROS ENTEROS 2. REPRESENTACIÓN Y ORDENACIÓN DE NÚMEROS ENTEROS 3. OPERACIONES CON NÚMEROS ENTEROS 1. LOS NÚMEROS ENTEROS En la vida se nos presentan muchas veces

Más detalles

Números Enteros. 1º de ESO 1º ESO CAPÍTULO 6: NÚMEROS ENTEROS

Números Enteros. 1º de ESO 1º ESO CAPÍTULO 6: NÚMEROS ENTEROS 64 1º ESO CAPÍTULO 6: NÚMEROS ENTEROS Ilustraciones: Banco de imágenes del INTEF 65 Índice 1. NÚMEROS ENTEROS 1.1. NÚMEROS POSITIVOS, NEGATIVOS Y CERO 1.2. DONDE APARECEN LOS NÚMEROS NEGATIVOS 1.3. QUE

Más detalles

TEMA 1: NÚMEROS REALES

TEMA 1: NÚMEROS REALES TEMA 1: NÚMEROS REALES 3º ESO Matemáticas Apuntes para trabajo del alumnos en el aula. 1. Fracciones. Números racionales Si se multiplican o dividen el numerador y el denominador de una fracción por un

Más detalles

Números Naturales (N)

Números Naturales (N) Teoría de Conjuntos Números Naturales (N) Recuerda que: Un conjunto es una colección o agrupación de personas, animales o cosas. Los conjuntos generalmente se simbolizan con letras mayúsculas y sus elementos

Más detalles

Números Naturales (N)

Números Naturales (N) Teoría de Conjuntos Números Naturales (N) Recuerda que: Un conjunto es una colección o agrupación de personas, animales o cosas. Los conjuntos generalmente se simbolizan con letras mayúsculas y sus elementos

Más detalles

Como Luis debe a Ana 5 euros podemos escribir: 5 euros. Como Luis debe a Laura 6 euros podemos escribir: 6 euros.

Como Luis debe a Ana 5 euros podemos escribir: 5 euros. Como Luis debe a Laura 6 euros podemos escribir: 6 euros. Ejercicios de números enteros con solución 1 Luis debe 5 euros a Ana y 6 euros a Laura. Expresa con números enteros las cantidades que debe Luis. Como Luis debe a Ana 5 euros podemos escribir: 5 euros.

Más detalles

Tema 1: Divisibilidad. Los Números Enteros.

Tema 1: Divisibilidad. Los Números Enteros. Matemáticas Ejercicios Tema 1 2º ESO Bloque I: Aritmética Tema 1: Divisibilidad. Los Números Enteros. 1.- Completa con la palabra múltiplo o divisor: a) 8 es. de 4 b) 7 es. de 49 c) 5 es. de 35 d) 72 es.

Más detalles

a) A la mitad del número le sumo 3 y el resultado es 8 ( ) 9 b) En la ecuación 3x = 54 Qué valor puede tomar x? ( ) Rombo

a) A la mitad del número le sumo 3 y el resultado es 8 ( ) 9 b) En la ecuación 3x = 54 Qué valor puede tomar x? ( ) Rombo Guía Matemáticas 3 ELIGE LA RESPUESTA CORRECTA.. Anota en el paréntesis de la derecha la letra que corresponda. a) A la mitad del número le sumo 3 y el resultado es 8 9 b) En la ecuación 3 = 54 Qué valor

Más detalles

Desarrolla tus habilidades

Desarrolla tus habilidades EDUCANDO CORAZONES PARA TRANSFORMAR EL MUNDO Profesores: Nayaret Sanhueza Inostroza Carlos Sanhueza Valenzuela GUÍA Nº 1: NÚMEROS NATURALES Contenidos: - Lectura y escritura de números naturales - Composición

Más detalles

1 LOS NÚMEROS ENTEROS

1 LOS NÚMEROS ENTEROS 1 LOS NÚMEROS ENTEROS EJERCICIOS PROPUESTOS 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 Escribe un número entero para cada condición. a) Negativo y con valor absoluto es menor que 9. b) Su opuesto es un negativo mayor

Más detalles

Los números enteros. Dado que los enteros contienen los enteros positivos, se considera a los números naturales son un subconjunto de los enteros.

Los números enteros. Dado que los enteros contienen los enteros positivos, se considera a los números naturales son un subconjunto de los enteros. Los números enteros Con los números naturales no era posible realizar diferencias donde el minuendo era menor que el que el sustraendo, pero en la vida nos encontramos con operaciones de este tipo donde

Más detalles

TEMA 2 NÚMEROS ENTEROS

TEMA 2 NÚMEROS ENTEROS TEMA 2 NÚMEROS ENTEROS Criterios De Evaluación de la Unidad 1. Utilizar de forma adecuada los números enteros. 2. Representar sobre la recta los números enteros. 3. Hallar el valor absoluto de cualquier

Más detalles

Repaso para el dominio de la materia

Repaso para el dominio de la materia LECCIÓN. Repaso para el dominio de la materia sar con las páginas 66 a 7 OJETIVO Representar gráficamente y comparar números positivos y negativos. EJEMPLO Los números enteros positivos son los números

Más detalles

LOS ÁNGULOS. Agudo Recto Obtuso Llano Completo

LOS ÁNGULOS. Agudo Recto Obtuso Llano Completo LOS ÁNGULOS Los ángulos según su abertura Agudo Recto Obtuso Llano Completo Los ángulos según su posición relativa Consecutivos Adyacentes Opuestos por el vértices Tienen el vértice y un lado Son consecutivos

Más detalles

NÚMEROS ENTEROS. Realizar las siguientes operaciones con números enteros:

NÚMEROS ENTEROS. Realizar las siguientes operaciones con números enteros: NÚMEROS ENTEROS Realizar las siguientes operaciones con números enteros: 1) ( 3) + (+8) = 2) 5 8 + 9 + 13 = 3) 13 + 6 17 = 4) (+12) (+7) = 5) 13 + 8 (+9) = 6) 16 ( 7) = 7) 9 13 = 8) +7 + 1 + 22 = 9) 6

Más detalles

POLINOMIOS. Matemática Intermedia Profesora Mónica Castro

POLINOMIOS. Matemática Intermedia Profesora Mónica Castro POLINOMIOS Matemática Intermedia Profesora Mónica Castro Objetivos Definir y repasar los conceptos básicos de polinomios. Discutir los distintos métodos de factorización de polinomios. Establecer distintas

Más detalles

Unidad 1 Números. Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto.

Unidad 1 Números. Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto. Unidad 1 Números 1.- Números Naturales Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto. El conjunto de números naturales se representa por la letra N Operaciones

Más detalles

Dra. Carmen Ivelisse Santiago Rivera 1 MÓDULO DE LOS ENTEROS. Por profesoras: Iris Mercado y Carmen Ivelisse Santiago GUÍA DE AUTO-AYUDA

Dra. Carmen Ivelisse Santiago Rivera 1 MÓDULO DE LOS ENTEROS. Por profesoras: Iris Mercado y Carmen Ivelisse Santiago GUÍA DE AUTO-AYUDA Dra. Carmen Ivelisse Santiago Rivera 1 1 MÓDULO DE LOS ENTEROS Por profesoras: Iris Mercado y Carmen Ivelisse Santiago GUÍA DE AUTO-AYUDA Dra. Carmen Ivelisse Santiago Rivera 2 Módulo 3 Tema: Los Enteros

Más detalles

CONJUNTO DE LOS NUMEROS ENTEROS

CONJUNTO DE LOS NUMEROS ENTEROS República Bolivariana de Venezuela Ministerio de la Defensa Universidad Nacional Experimental Politécnica de la Fuerza Armada Núcleo Caracas CIU Cátedra: Razonamiento Matemático CONJUNTO DE LOS NUMEROS

Más detalles

UNIDAD 1. Escribe los diez primeros múltiplos de 12. Solución: 12, 24, 36, 48, 60, 72, 84, 96, 108, 120

UNIDAD 1. Escribe los diez primeros múltiplos de 12. Solución: 12, 24, 36, 48, 60, 72, 84, 96, 108, 120 UNIDAD 1 Responde a la pregunta y justifica tu respuesta: a El número 64 es múltiplo de 4? Por qué? b El número 6 es divisor de 4? Por qué? c El número 14 es divisor de 56? Por qué? d El número 10 es múltiplo

Más detalles

Qué diferencia observas entre los primeros cinco ejemplos que son polinomios y estos dos que no lo son?

Qué diferencia observas entre los primeros cinco ejemplos que son polinomios y estos dos que no lo son? POLINOMIOS Definición: Un polinomio en la variable x es una expresión algebraica formada solamente por la suma de términos de la forma ax n, donde a es cualquier número y n es un número entero no negativo.

Más detalles

Universidad Politécnica de Puerto Rico Departamento de Ciencias y Matemáticas. Preparado por: Prof. Manuel Capella-Casellas, M.A.Ed.

Universidad Politécnica de Puerto Rico Departamento de Ciencias y Matemáticas. Preparado por: Prof. Manuel Capella-Casellas, M.A.Ed. Universidad Politécnica de Puerto Rico Departamento de Ciencias y Matemáticas Preparado por: Prof. Manuel Capella-Casellas, M.A.Ed. Agosto, 00 Notación exponencial La notación exponencial se usa para repetir

Más detalles

El calendario: un organizador del tiempo

El calendario: un organizador del tiempo El calendario: un organizador del tiempo El calendario es un invento del ser humano para poder medir el tiempo. Los primeros calendarios aparecen con los antiguos babilonios, egipcios y griegos, quienes

Más detalles

Los números de cuatro cifras

Los números de cuatro cifras Los números de cuatro cifras = UM C D U 0 centenas (C) = unidad de millar (UM) unidad de millar = 0 centenas = 00 decenas = 000 unidades UM = 0 C = 00 D = 000 U UM C D U Escribe cómo se leen estos números:

Más detalles

Los números de seis cifras

Los números de seis cifras Los números de seis cifras Trabajamos las centenas de millar y los millones Diez decenas de millar (DM) forman una centena de millar (CM). CM DM UM C D U CM DM UM C D U 1 CM = 10 DM 1 CM = 10 DM = 100

Más detalles

Escribe los números que faltan en esta tabla. Nombre:... Fecha:... Mª Carmen Tabarés

Escribe los números que faltan en esta tabla. Nombre:... Fecha:... Mª Carmen Tabarés Escribe los números que faltan en esta tabla. 0 1 2 13 16 24 28 32 35 39 40 47 51 54 59 60 63 66 72 75 78 84 87 91 96 99 Completa estas series. 40 42 52 60 30 28 26 10 La decena. ~ 10 unidades forman U

Más detalles

a, donde a NÚMEROS REALES Dividir y tomar partes de una unidad. FRACIÓN LA FORMA a Como OPERADOR RAZÓN PORCENTAJE COCIENTE

a, donde a NÚMEROS REALES Dividir y tomar partes de una unidad. FRACIÓN LA FORMA a Como OPERADOR RAZÓN PORCENTAJE COCIENTE NÚMEROS REALES Dividir y tomar partes de una unidad. FRACIÓN LA FORMA a Como OPERADOR RAZÓN PORCENTAJE COCIENTE Que se pueden escribir de la forma b a, donde a y b son enteros y b 0. Operaciones: suma,

Más detalles

www.matesxronda.net José A. Jiménez Nieto

www.matesxronda.net José A. Jiménez Nieto NÚMEROS REALES 1. NÚMEROS IRRACIONALES: CARACTERIZACIÓN. En el tema correspondiente a números racionales hemos visto que estos números tienen una característica esencial: su expresión decimal es exacta

Más detalles

Mó duló 02: Nu merós Reales

Mó duló 02: Nu merós Reales INTERNADO MATEMÁTICA 016 Guía para el Estudiante Mó duló 0: Nu merós Reales Objetivo: Comprender los números reales como un conjunto que está conformado por otros conjuntos numéricos, los cuales tienen

Más detalles

Lección 8: Suma y resta de en teros

Lección 8: Suma y resta de en teros LECCIÓN 8 bajo el nivel del mar, y el buzo B baja a 81 metros bajo el nivel del mar. Cuál de los dos está más cerca de la superficie? d) El saldo de la empresa Caluro, S.A. es de $12 807 en números rojos,

Más detalles

SISTEMA DE NUMERACIÓN DECIMAL

SISTEMA DE NUMERACIÓN DECIMAL 1 SISTEMA DE NUMERACIÓN DECIMAL 1. Indica los órdenes: centenas = centenas de millar = unidades de millón = millares = decenas de millar = centenas de millón = decena de millón = decenas simples = 2. Escribe

Más detalles

TEMA 1. Las cuentas de andar por casa

TEMA 1. Las cuentas de andar por casa TEMA 1. Las cuentas de andar por casa 1.-Los distintos tipos de números Módulo 3 1.1. Los números naturales El conjunto de los números naturales está formado por: N = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,...}

Más detalles

Primer Año EL CONJUNTO DE LOS NÚMEROS ENTEROS

Primer Año EL CONJUNTO DE LOS NÚMEROS ENTEROS EL CONJUNTO DE LOS NÚMEROS ENTEROS Contenidos a desarrollar: Producción de fórmulas en N. Elaboración de fórmulas para calcular el paso n de un proceso que cumple cierta regularidad (suma de los n primeros

Más detalles

Cuaderno de Actividades 4º ESO

Cuaderno de Actividades 4º ESO Cuaderno de Actividades 4º ESO Relaciones funcionales. Estudio gráfico y algebraico de funciones 1. Interpretación de gráficas 1. Un médico dispone de 1hora diaria para consulta. El tiempo que podría,

Más detalles

Teoría (resumen) Por ejemplo, los múltiplos de 3 son: 3, 6, 9, 12, 15, 18, ; los múltiplos de 2 son: 2, 4, 6, 8, 10, 12, ; o sea los números pares.

Teoría (resumen) Por ejemplo, los múltiplos de 3 son: 3, 6, 9, 12, 15, 18, ; los múltiplos de 2 son: 2, 4, 6, 8, 10, 12, ; o sea los números pares. 1.- Divisibilidad Teoría (resumen) Múltiplos de un número. Son aquellos que se obtienen al multiplicar dicho número por los números naturales 1, 2, 3,. Por ejemplo, los múltiplos de 3 son: 3, 6, 9, 12,

Más detalles

POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO.

POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO. 1. LOS NÚMEROS NATURALES POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO. 2. LOS NÚMEROS ENTEROS. VALOR ABSOLUTO DE UN NÚMERO ENTERO. REPRESENTACIÓN GRÁFICA. OPERACIONES.

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS NÚMEROS NATURALES: Son los que utilizamos para contar Ejemplo: Contar el número de alumnos de la clase, escribir el número de la matrícula de un coche Se representan N{0,1,2, } Ejercicio:

Más detalles

LA RECTA. Recuerda: Ejercicios de autoaprendizaje 1. Sea la gráfica siguiente:

LA RECTA. Recuerda: Ejercicios de autoaprendizaje 1. Sea la gráfica siguiente: LA RECTA Recuerda: Una recta es una función de la forma y = mx + n, siendo m y n números reales m es la pendiente de la recta y n es la ordenada en el origen La ordenada en el origen nos indica el punto

Más detalles

1.2 Números enteros. 1.2.1 El concepto de número entero

1.2 Números enteros. 1.2.1 El concepto de número entero 1.2 1.2.1 El concepto de número entero Entre las necesidades de cálculo del pastor cavernícola que descubrió los números naturales y las del hombre actual hay diferencias radicales. El hombre rupestre

Más detalles

Ficha: Números enteros. a) Rubén tiene ocho euros: b) Marta debe seis euros:

Ficha: Números enteros. a) Rubén tiene ocho euros: b) Marta debe seis euros: CEO Bethencourt Molina Ficha: Números enteros 1. Expresa con números enteros cada una de las siguientes situaciones: a) Rubén tiene ocho euros: b) Marta debe seis euros: c) Hace mucho frío, estamos a cinco

Más detalles

Función lineal y afín

Función lineal y afín Función lineal y afín Objetivos 1. Comprender el concepto de ejes de coordenadas 2. Comprender el concepto de función 3. Obtener información a partir de la gráfica de una función 4. Manejar la función

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION

INSTITUCION EDUCATIVA LA PRESENTACION INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS DOCENTE: HUGO HERNAN BEDOYA Y LUIS LOPEZ TIPO DE GUIA: NIVELACION PERIODO GRADO FECHA DURACION 8 A/B Abril

Más detalles

Números enteros. Dado cualquier número natural, éste siempre será menor que su sucesor, luego los naturales son ordenados.

Números enteros. Dado cualquier número natural, éste siempre será menor que su sucesor, luego los naturales son ordenados. Números naturales y cardinales Números enteros Los elementos del conjunto N = {1,2,3, } se denominan números naturales. Si a este conjunto le unimos el conjunto formado por el cero, obtenemos N 0 = {0,1,2,

Más detalles

MATEMÁTICAS 2º ESO. TEMA 1

MATEMÁTICAS 2º ESO. TEMA 1 MATEMÁTICAS 2º ESO. TEMA 1 1. DIVISIBILIDAD Y NÚMEROS ENTEROS 1. Los divisores son siempre menores o iguales que el número. 2. Los múltiplos siempre son mayores o iguales que el número. 3. Para saber si

Más detalles

SOLUCIONES. BLOQUE DE EJERCICIOS DE NÚMEROS ENTEROS, FRACCIONARIOS E IRRACIONALES.

SOLUCIONES. BLOQUE DE EJERCICIOS DE NÚMEROS ENTEROS, FRACCIONARIOS E IRRACIONALES. CEPA Enrique Tierno Galván. Ámbito Científico-Tecnológico. Nivel. SOLUCIONES. BLOQUE DE EJERCICIOS DE NÚMEROS ENTEROS, FRACCIONARIOS E IRRACIONALES. Números enteros. -0-9 - 0 0. A = -B = - C = -8 D = 0

Más detalles

Práctica 02 Expresiones Algebraicas

Práctica 02 Expresiones Algebraicas Instituto Tecnológico de Costa Rica Escuela de Matemática Matemática General Práctica 0 Expresiones Algebraicas I. Determine el valor numérico de la expresión en cada caso: ) x + ax b si x =, a = y b =

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos NÚMEROS REALES Como se ha señalado anteriormente la necesidad de resolver diversos problemas de origen aritmético y geométrico lleva a ir ampliando sucesivamente los conjuntos numéricos, N Z Q, y a definir

Más detalles

Enteros y valor absoluto (páginas 106 108)

Enteros y valor absoluto (páginas 106 108) A NOMRE FECHA PERÍODO Enteros y valor absoluto (páginas 106 108) Un entero es cualquier número del conjunto {, 3, 2, 1, 0, 1, 2, 3, }. Los enteros mayores de 0 son enteros positivos. Los enteros menores

Más detalles

USO DE LA CALCULADORA EN LA ENSEÑANZA DE LAS MATEMÁTICAS EN LA ESCUELA SECUNDARIA

USO DE LA CALCULADORA EN LA ENSEÑANZA DE LAS MATEMÁTICAS EN LA ESCUELA SECUNDARIA USO DE LA CALCULADORA EN LA ENSEÑANZA DE LAS MATEMÁTICAS EN LA ESCUELA SECUNDARIA En la enseñanza de las matemáticas la calculadora básica o graficadora puede ayudar a que los estudiantes refinen sus conjeturas

Más detalles

2. EXPRESIONES ALGEBRAICAS

2. EXPRESIONES ALGEBRAICAS 2. EXPRESIONES ALGEBRAICAS Tales como, 2X 2 3X + 4 ax + b Se obtienen a partir de variables como X, Y y Z, constantes como -2, 3, a, b, c, d y cobinadas utilizando la suma, resta, multiplicación, división

Más detalles

Ejercicios de recuperación de 4º de ESO 1ª Evaluación. Cinemática

Ejercicios de recuperación de 4º de ESO 1ª Evaluación. Cinemática Ejercicios de recuperación de 4º de ESO 1ª Evaluación. Cinemática Descripción del movimiento 1.- Enumera todos aquellos factores que te parezcan relevantes para describir un movimiento. 2.- Es verdadera

Más detalles

MÓDULO DIDÁCTICO PARA LA ENSEÑANZA Y EL APRENDIZAJE DE LA ASIGNATURA DE MATEMÁTICA EN ESCUELAS RURALES MULTIGRADO

MÓDULO DIDÁCTICO PARA LA ENSEÑANZA Y EL APRENDIZAJE DE LA ASIGNATURA DE MATEMÁTICA EN ESCUELAS RURALES MULTIGRADO % MÓDULO DIDÁCTICO PARA LA ENSEÑANZA Y EL APRENDIZAJE DE LA ASIGNATURA DE MATEMÁTICA EN ESCUELAS RURALES MULTIGRADO & 2 Aplicando las operaciones y conociendo sus significados CLASE 1 CUADERNO DE TRABAJO

Más detalles

Escribiendo números usando la notación

Escribiendo números usando la notación Unidad 2: Introducción a la notación Bitácora del Estudiante Escribiendo números usando la notación Realiza las siguientes actividades, mientras trabajas con el tutorial. 1. La distancia al satélite es

Más detalles

GUÍA NÚMERO 1. Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras Departamento de Matemática RESUMEN PSU MATEMATICA

GUÍA NÚMERO 1. Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras Departamento de Matemática RESUMEN PSU MATEMATICA Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras Departamento de Matemática RESUMEN PSU MATEMATICA GUÍA NÚMERO 1 NÚMEROS NATURALES Y CARDINALES ( IN, IN 0 ) Los elementos

Más detalles

CURSOS CENEVAL TOLUCA

CURSOS CENEVAL TOLUCA Precálculo Propiedades de los números reales Los números que se utilizan en el álgebra son los números reales. Hay un número real en cada punto de la recta numérica. Los números reales se dividen en números

Más detalles

NÚMEROS REALES. Página 27 REFLEXIONA Y RESUELVE. El paso de Z a Q. El paso de Q a Á

NÚMEROS REALES. Página 27 REFLEXIONA Y RESUELVE. El paso de Z a Q. El paso de Q a Á NÚMEROS REALES Página 7 REFLEXIONA Y RESUELVE El paso de Z a Q Di cuáles de las siguientes ecuaciones se pueden resolver en Z y para cuáles es necesario el conjunto de los números racionales, Q. a) x 0

Más detalles

TRABAJO DE RECUPERACIÓN CUARTO BIMESTRE 2015 2016

TRABAJO DE RECUPERACIÓN CUARTO BIMESTRE 2015 2016 TRABAJO DE RECUPERACIÓN CUARTO BIMESTRE 2015 2016 MATEMÁTICAS II PROFRA. GABRIELA VIVANCO RODRÍGUEZ NOMBRE DEL ESTUDIANTE: GRUPO: INSTRUCCIONES: Imprimir en hojas blancas tamaño carta. Resolver con lápiz.

Más detalles

FUNCIONES CUADRÁTICAS. PARÁBOLAS

FUNCIONES CUADRÁTICAS. PARÁBOLAS FUNCIONES CUADRÁTICAS. PARÁBOLAS 1. FUNCIONES CUADRÁTICAS Representemos, en función de la longitud de la base (x), el área (y) de todos los rectángulos de perímetro 1 metros. De ellos, cuáles son las medidas

Más detalles

CENTRO DE EDUCACIÓN MEDIA CURSO CERO. Departamento: Matemáticas y Física. Área Académica: Matemáticas. Nombre de la materia: Curso Cero

CENTRO DE EDUCACIÓN MEDIA CURSO CERO. Departamento: Matemáticas y Física. Área Académica: Matemáticas. Nombre de la materia: Curso Cero CENTRO DE EDUCACIÓN MEDIA CURSO CERO DATOS DE IDENTIFICACIÓN CENTRO DE EDUCACIÓN MEDIA Departamento: Matemáticas y Física. Área Académica: Matemáticas BACHILLERATO Nombre de la materia: Curso Cero Tipo

Más detalles
Sitemap