Variable Aleatoria. Relación de problemas 6


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Variable Aleatoria. Relación de problemas 6"

Transcripción

1 Relación de problemas 6 Variable Aleatoria. Consideremos el experimento aleatorio consistente en lanzar dos dados equilibrados y observar el número máximo de los dos números obtenidos en ellos. Si X es la variable aleatoria asociada a ese experimento, hallar: a) La función masa de probabilidad de la variable aleatoria X. b) La función de distribución de la variable aleatoria X. c) F(,5). d) P[ X 4]. e) La esperanza y la varianza.. Al lanzar dos dados, consideramos la suma de sus resultados. Sea X la variable aleatoria asociada a este experimento aleatorio. Hallar: a) La función masa de probabilidad. Representarla gráficamente. c) P[ X 7]. d) P[ < X < 7]. e) Esperanza de la variable aleatoria. f ) Calcular la esperanza del doble de la suma de los resultados de los dados. g) Calcular la esperanza de la mitad de la suma de los resultados de los dados. h) Calcular la esperanza de la variable Y = X + X Se lanzan tres monedas al aire. Sea la variable aleatoria X=número de caras obtenidas. a) Obtener la función masa de probabilidad de la variable X. b) Obtener la función de distribución de la variable X y representarla gráficamente. c) Calcular la esperanza matemática de la variable. d) Calcular la varianza de X. e) Calcular la probabilidad de que el número de caras observadas sea a lo sumo dos. f ) Calcular la probabilidad de que el número de caras observadas sea al menos dos. g) Calcular la probabilidad de que no se observe ninguna cara. 5

2 6 4. Sea X una variable aleatoria discreta que tiene como función masa de probabilidad P[X = x] =, x =,,, 0 a) Calcular la función de distribución. b) Calcular P[X > 7]. c) Calcular P[X 5]. d) Calcular P[ < X 8]. 5. Sea X una variable aleatoria con la siguiente función de densidad: x, 0 x < k x, x < Calcular: a) El valor de la constante k. c) La media de la distribución. 6. La variable aleatoria X representa el tiempo en minutos que transcurre entre dos llegadas consecutivas a una tienda y su función de densidad de probabilidad está dada por: { k exp( x ), x > 0 c) La probabilidad de que el tiempo entre dos llegadas consecutivas se encuentre entre y 6 minutos. d) La probabilidad de que transcurran menos de 8 minutos entre llegadas consecutivas. e) La probabilidad de que el tiempo entre llegadas consecutivas exceda los 8 minutos. 7. La variable aleatoria que representa la proporción de accidentes automovilísticos fatales en Estados Unidos tiene la siguiente función de densidad: { 4x( x) 5, 0 < x a) Demostrar que f es una función de densidad. b) Calcular f( 4 ). c) Calcular la función de distribución. d) Calcular P[X 0,5]. Relación de problemas de Estadística Curso

3 7 8. Sea X una variable aleatoria continua con función de densidad: { kx, 0 < x a) Calcular k. b) Calcular la función de distribución. c) P[X,]. d) P[0,8 X]. e) P[ X,5]. f ) Calcular la esperanza y la varianza de X. 9. Se considera la variable aleatoria X con función de distribución: 0, x (x ) 8, < x < 4, 4 x a) Calcular la función de densidad. b) Calcular P[ X], P[ < X < ], P[X < ] y P[X > 4]. 0. Sea X una variable aleatoria con función de densidad definida de la forma: { kx ( x ), 0 < x < Calcular la función de distribución.. Sea X la duración en segundos de un tipo de circuitos. X puede tomar todos los valores comprendidos entre 0 y +. Supongamos que la función de densidad de X es: { a x, 00 < x < 000 a) Calcular el valor de a para que f sea una función de densidad. b) Calcular la probabilidad de que un circuito dure exactamente 00 segundos. c) Calcular la esperanza de X. d) Calcular P[00 < X < 00]. e) Calcular P[00 X 00].. Sea X una variable aleatoria cuya función de distribución viene dada por: { 0, x 0 e x, 0 < x a) Obtener la función de densidad. b) P[ < X < 8]. c) P[ < X < 4]. d) P[X ]. Ingeniero Técnico en Informática de Sistemas. Grupo B.

4 8. Una variable tiene como función de densidad de probabilidad: c) P[X > 0]. d) P[X ]. (7+x) k, 7 < x 0 (7 x) k, 0 < x 7 4. Decidir razonadamente cuáles de las siguientes funciones son de distribución: x < a) x < x b) c) 0 x < 4 x 5 < x < x 0 x < 0 0 x 5 < x < 6 6 x En caso afirmativo, decidir si corresponden a variables aleatorias discretas o continuas, justificando la respuesta. 5. Dada la función de probabilidad: Calcular: a) P[X = 4]. b) P[ X 0]. c) Esperanza de X. P[X = i] = ki i =,,...,0 6. Una variable tiene como función de densidad: { aexp ( x) x > 0 0 a) F(x). b) P[ < X < ]. c) P[ X]. Relación de problemas de Estadística Curso

5 9 d) P[0,5 X ]. e) P[ > X]. 7. Dada la función: 0, x < 0 x, 0 x < (x x ), x <, x a) Calcular la función de densidad de la variable aleatoria asociada. b) P[X > 0,75]. c) P[0,5 < X < 0,75]. d) Comprobar que F es una función de distribución. 8. Dada una variable aleatoria X con función de distribución: 0, x 0 x n, 0 < x <, x a) Calcular la función de densidad. b) Calcular la media y la varianza de X. 9. La variable aleatoria X tiene la siguiente función de densidad: mx 0 < x < mx x < 4 0 a) Hallar m y determinar la función de distribución. b) Hallar E[X] y V ar[x]. 0. Dada X una variable aleatoria con función de densidad: k exp ( x ) < x < Determinar c) P[ < X < ] y P[X ]. Ingeniero Técnico en Informática de Sistemas. Grupo B.

Tema 4: Variable aleatoria. Métodos Estadísticos

Tema 4: Variable aleatoria. Métodos Estadísticos Tema 4: Variable aleatoria. Métodos Estadísticos Definición de v.a. Definición: Una variable aleatoria (v.a.) es un número real asociado al resultado de un experimento aleatorio, es decir, una función

Más detalles

Dr. Mauro Gutierrez Martinez Dr. Christiam Gonzales Chávez

Dr. Mauro Gutierrez Martinez Dr. Christiam Gonzales Chávez Profesores: Mg. Cecilia Rosas Meneses Dr. Mauro Gutierrez Martinez Dr. Christiam Gonzales Chávez Definición. La función de distribución acumulada F X de una v.a. X es definida para cada número real x como

Más detalles

Teorema de Bayes. mientras que B tiene una tasa de defectos del 4%.

Teorema de Bayes. mientras que B tiene una tasa de defectos del 4%. Teorema de Bayes Ejemplo: En una empresa manufacturera, una máquina A produce el 60% de la producción total, mientras que una máquina B el restante 40%. 71 El 2% de las unidades producidas por A son defectuosas,

Más detalles

PROBABILIDAD Y ESTADÍSTICA. Sesión 5 (En esta sesión abracamos hasta tema 5.8)

PROBABILIDAD Y ESTADÍSTICA. Sesión 5 (En esta sesión abracamos hasta tema 5.8) PROBABILIDAD Y ESTADÍSTICA Sesión 5 (En esta sesión abracamos hasta tema 5.8) 5 DISTRIBUCIONES DE PROBABILIDAD CONTINUAS Y MUESTRALES 5.1 Distribución de probabilidades de una variable aleatoria continua

Más detalles

Soluciones Examen de Estadística

Soluciones Examen de Estadística Soluciones Examen de Estadística Ingeniería Superior de Telecomunicación 15 de Febrero, 5 Cuestiones horas C1. Un programa se ejecuta desde uno cualquiera de cuatro periféricos A, B, C y D con arreglo

Más detalles

DISTRIBUCIONES DE PROBABILIDAD

DISTRIBUCIONES DE PROBABILIDAD DISTRIBUCIONES DE PROBABILIDAD Se llama variable aleatoria a toda función que asocia a cada elemento del espacio muestral E un número real. Una variable aleatoria discreta es aquella que sólo puede tomar

Más detalles

Unidad III Variables Aleatorias Unidimensionales

Unidad III Variables Aleatorias Unidimensionales Unidad III Variables Aleatorias Unidimensionales En el capítulo anterior se examinaron los conceptos básicos de probabilidad con respecto a eventos que se encuentran en un espacio muestral. Los experimentos

Más detalles

Variables aleatorias. Examen Junio La función de distribución de una variable continua X es de la forma:

Variables aleatorias. Examen Junio La función de distribución de una variable continua X es de la forma: TEMA 6: Variables aleatorias Examen Junio 003.- La función de distribución de una variable continua X es de la forma: 3 F ( t) = P( X t) = a + bt ct t, Se sabe que la densidad verifica f(-)=f()=0. [ ]

Más detalles

Tema 5: Principales Distribuciones de Probabilidad

Tema 5: Principales Distribuciones de Probabilidad Tema 5: Principales Distribuciones de Probabilidad Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 5: Principales Distribuciones de Probabilidad

Más detalles

2. Probabilidad y. variable aleatoria. Curso 2011-2012 Estadística. 2. 1 Probabilidad. Probabilidad y variable aleatoria

2. Probabilidad y. variable aleatoria. Curso 2011-2012 Estadística. 2. 1 Probabilidad. Probabilidad y variable aleatoria 2. Probabilidad y variable aleatoria Curso 2011-2012 Estadística 2. 1 Probabilidad 2 Experimento Aleatorio EL término experimento aleatorio se utiliza en la teoría de la probabilidad para referirse a un

Más detalles

DOCUMENTO 3: DISTRIBUCIÓN DE PROBABILIDAD DE V. A. CONTINUA: LA DISTRIBUCIÓN NORMAL

DOCUMENTO 3: DISTRIBUCIÓN DE PROBABILIDAD DE V. A. CONTINUA: LA DISTRIBUCIÓN NORMAL DOCUMENTO 3: DISTRIBUCIÓN DE PROBABILIDAD DE V. A. CONTINUA: LA DISTRIBUCIÓN NORMAL 3.1 INTRODUCCIÓN Como ya sabes, una distribución de probabilidad es un modelo matemático que nos ayuda a explicar los

Más detalles

TEMA II: DISTRIBUCIONES RELACIONADAS CON LA NORMAL

TEMA II: DISTRIBUCIONES RELACIONADAS CON LA NORMAL ESTADÍSTICA II TEMA II: DISTRIBUCIONES RELACIONADAS CON LA NORMAL II.1.- Distribución chi-cuadrado. II.1.1.- Definición. II.1..- Función de densidad. Representación gráfica. II.1.3.- Media y varianza.

Más detalles

Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s).

Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s). VARIABLE ALEATORIA Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s). X : S S s s X () s X(s) Rx Rx es el recorrido

Más detalles

Distribución de Probabilidad Normal

Distribución de Probabilidad Normal Distribución de Probabilidad Normal Departamento de Estadística-FACES-ULA 22 de Diciembre de 2013 Introducción La distribución normal es quizás la distribución de probabilidad para variables aleatorias

Más detalles

Distribución muestral de proporciones. Algunas secciones han sido tomadas de: Apuntes de Estadística Inferencial Instituto Tecnológico de Chiuhuahua

Distribución muestral de proporciones. Algunas secciones han sido tomadas de: Apuntes de Estadística Inferencial Instituto Tecnológico de Chiuhuahua Distribución muestral de proporciones Algunas secciones han sido tomadas de: Apuntes de Estadística Inferencial Instituto Tecnológico de Chiuhuahua Distribución muestral de Proporciones Existen ocasiones

Más detalles

Tema 5 Algunas distribuciones importantes

Tema 5 Algunas distribuciones importantes Algunas distribuciones importantes 1 Modelo Bernoulli Distribución Bernoulli Se llama experimento de Bernoulli a un experimento con las siguientes características: 1. Se realiza un experimento con dos

Más detalles

C. Distribución Binomial

C. Distribución Binomial Objetivos de aprendizaje 1. Definir los resultados binomiales 2. Calcular la probabilidad de obtener X éxitos en N pruebas 3. Calcular probabilidades binomiales acumulativas 4. Encontrar la media y la

Más detalles

Test de Kolmogorov-Smirnov

Test de Kolmogorov-Smirnov Test de Kolmogorov-Smirnov Georgina Flesia FaMAF 2 de junio, 2011 Test de Kolmogorov-Smirnov El test chi-cuadrado en el caso continuo H 0 : Las v.a. Y 1, Y 2,..., Y n tienen distribución continua F. Particionar

Más detalles

CONCEPTOS FUNDAMENTALES

CONCEPTOS FUNDAMENTALES TEMA 8: CONTRASTES DE HIPÓTESIS PARAMÉTRICAS PRIMERA PARTE: Conceptos fundamentales 8.1. Hipótesis estadística. Tipos de hipótesis 8.2. Región crítica y región de aceptación 8.3. Errores tipo I y tipo

Más detalles

Distribuciones de probabilidad más usuales

Distribuciones de probabilidad más usuales Tema 5 Distribuciones de probabilidad más usuales En este tema se estudiarán algunas de las distribuciones discretas y continuas más comunes, que se pueden aplicar a una gran diversidad de problemas y

Más detalles

Introducción al Tema 9

Introducción al Tema 9 Tema 2. Análisis de datos univariantes. Tema 3. Análisis de datos bivariantes. Tema 4. Correlación y regresión. Tema 5. Series temporales y números índice. Introducción al Tema 9 Descripción de variables

Más detalles

MODELO DE RESPUESTAS Objetivos del 1 al 9

MODELO DE RESPUESTAS Objetivos del 1 al 9 PRUEBA INTEGRAL LAPSO 05-764 - /9 Universidad Nacional Abierta Probabilidad y Estadística I (Cód. 764) Vicerrectorado Académico Cód. Carrera: 6 Fecha: 0-04-06 MODELO DE RESPUESTAS Objetivos del al 9 OBJ

Más detalles

3. VARIABLES ALEATORIAS

3. VARIABLES ALEATORIAS . VARIABLES ALEATORIAS L as variables aleatorias se clasiican en discretas y continuas, dependiendo del número de valores que pueden asumir. Una variable aleatoria es discreta si sólo puede tomar una cantidad

Más detalles

Distribuciones de Probabilidad Para Variables Aleatorias Continuas

Distribuciones de Probabilidad Para Variables Aleatorias Continuas Distribuciones de Probabilidad Para Variables Aleatorias Continuas Departamento de Estadística-FACES-ULA 20 de Diciembre de 2013 Introducción Recordemos la definición de Variable Aleatoria Continua. Variable

Más detalles

EJERCICIOS RESUELTOS TEMA 7

EJERCICIOS RESUELTOS TEMA 7 EJERCICIOS RESUELTOS TEMA 7 7.1. Seleccione la opción correcta: A) Hay toda una familia de distribuciones normales, cada una con su media y su desviación típica ; B) La media y la desviaciones típica de

Más detalles

Propiedades en una muestra aleatoria

Propiedades en una muestra aleatoria Capítulo 5 Propiedades en una muestra aleatoria 5.1. Conceptos básicos sobre muestras aleatorias Definición 5.1.1 X 1,, X n son llamadas una muestra aleatoria de tamaño n de una población f(x) si son variables

Más detalles

Cálculo de Probabilidades II Preguntas Tema 1

Cálculo de Probabilidades II Preguntas Tema 1 Cálculo de Probabilidades II Preguntas Tema 1 1. Suponga que un experimento consiste en lanzar un par de dados, Sea X El número máximo de los puntos obtenidos y Y Suma de los puntos obtenidos. Obtenga

Más detalles

Hemos visto que si se tira una moneda (con p = P (cruz)) n veces, entonces el número de cruces se distribuye como binomial.

Hemos visto que si se tira una moneda (con p = P (cruz)) n veces, entonces el número de cruces se distribuye como binomial. La distribución geométrica Hemos visto que si se tira una moneda (con p = P (cruz)) n veces, entonces el número de cruces se distribuye como binomial. Consideramos otro experimento relacionado. Vamos a

Más detalles

Distribución de Probabilidades con Nombre Propio Problemas Propuestos

Distribución de Probabilidades con Nombre Propio Problemas Propuestos Distribución de Probabilidades con Nombre Propio Problemas Propuestos DISTRIBUCIÓN BINOMIAL (BERNOULLI) 2.167 Hallar la probabilidad de que al lanzar una moneda honrada 6 veces aparezcan (a) 0, (b) 1,

Más detalles

6. VARIABLES ALEATORIAS

6. VARIABLES ALEATORIAS 6. VARIABLES ALEATORIAS Objetivo Introducir la idea de una variable aleatoria y su distribución y características como media, varianza etc. Bibliografía recomendada Peña y Romo (1997), Capítulo 15. Hasta

Más detalles

Capítulo 6: Variable Aleatoria Bidimensional

Capítulo 6: Variable Aleatoria Bidimensional Capítulo 6: Variable Aleatoria Bidimensional Cuando introducíamos el concepto de variable aleatoria unidimensional, decíamos que se pretendía modelizar los resultados de un experimento aleatorio en el

Más detalles

Modelo EOQ con Demanda Incierta. Teoría de Inventarios Modelo Probabilísticos. Demanda durante el Lead Time 18/04/2009

Modelo EOQ con Demanda Incierta. Teoría de Inventarios Modelo Probabilísticos. Demanda durante el Lead Time 18/04/2009 Universidad Técnica Federico Santa María Teoría de Inventarios Modelo Probabilísticos Daniel Basterrica Modelo EOQ con Demanda Incierta Lead Time no nulo Demanda aleatoria durante

Más detalles

UNIDAD II Eventos probabilísticos

UNIDAD II Eventos probabilísticos UNIDAD II Eventos probabilísticos UNIDAD 2 EVENTOS PROBABILÍSTICOS Muchas veces ocurre que al efectuar observaciones en situaciones análogas y siguiendo procesos idénticos se logaran resultados diferentes;

Más detalles

PARTE COMÚN MATERIA: FUNDAMENTOS DE MATEMÁTICAS

PARTE COMÚN MATERIA: FUNDAMENTOS DE MATEMÁTICAS CALIFICACIÓN: Consejería de Educación, Ciencia y Cultura PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL Junio 2011 Resolución de 9 de marzo de 2011 (DOCM de 5 de abril)

Más detalles

Ejercicios de Variables Aleatorias

Ejercicios de Variables Aleatorias Ejercicios de Variables Aleatorias Elisa M. Molanes-López, Depto. Estadística, UCM Función de distribución y función de densidad Ejercicio. Sea X una variable aleatoria con función de distribución dada

Más detalles

7. Distribución normal

7. Distribución normal 7. Distribución normal Sin duda, la distribución continua de probabilidad más importante, por la frecuencia con que se encuentra y por sus aplicaciones teóricas, es la distribución normal, gaussiana o

Más detalles

CÁLCULO DE PRIMITIVAS Y ÁREAS POR INTEGRALES

CÁLCULO DE PRIMITIVAS Y ÁREAS POR INTEGRALES CÁLCULO DE PRIMITIVAS Y ÁREAS POR INTEGRALES RELACIÓN DE PROBLEMAS DE SELECTIVIDAD º DE BACHILLERATO CIENCIAS DEPARTAMENTO DE MATEMÁTICAS COLEGIO MARAVILLAS TERESA GONZÁLEZ GÓMEZ .-Hallar una primitiva

Más detalles

UNIDAD XI Eventos probabilísticos

UNIDAD XI Eventos probabilísticos UNIDAD XI Eventos probabilísticos UNIDAD 11 EVENTOS PROBABILÍSTICOS Muchas veces ocurre que al efectuar observaciones en situaciones análogas y siguiendo procesos idénticos se logaran resultados diferentes;

Más detalles

Distribución Normal Curva Normal distribución gaussiana

Distribución Normal Curva Normal distribución gaussiana Distribución Normal La distribución continua de probabilidad más importante en todo el campo de la estadística es la distribución normal. La distribución normal tiene grandes aplicaciones prácticas, en

Más detalles

Variables aleatorias: problemas resueltos

Variables aleatorias: problemas resueltos Variables aleatorias: problemas resueltos BENITO J. GONZÁLEZ RODRÍGUEZ bjglez@ull.es DOMINGO HERNÁNDEZ ABREU dhabreu@ull.es MATEO M. JIMÉNEZ PAIZ mjimenez@ull.es M. ISABEL MARRERO RODRÍGUEZ imarrero@ull.es

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:

Más detalles

Relación de Problemas. Tema 6

Relación de Problemas. Tema 6 Relación de Problemas. Tema 6 1. En una urna hay 5 bolas blancas y 2 negras y se sacan tres bolas sin reemplazamiento. a) Calcular la distribución conjunta del número de bolas blancas y negras de entre

Más detalles

P (X 5) = P (x = 5) + P (X = 6) + P (X = 7) + P (X = 8) = 0.005416467 + 0.051456432 + 0.79334918 + 0.663420431 = 0.999628249

P (X 5) = P (x = 5) + P (X = 6) + P (X = 7) + P (X = 8) = 0.005416467 + 0.051456432 + 0.79334918 + 0.663420431 = 0.999628249 Hoja 3: robabilidad y variables aleatorias 1. La probabilidad de que un enfermo se recupere tomando un nuevo fármaco es 0.95. Si se les administra a 8 enfermos, hallar: a La probabilidad de que se recuperen

Más detalles

Universidad de Jaén Departamento de Matemáticas Ingeniería Técnica en Informática de Gestión.

Universidad de Jaén Departamento de Matemáticas Ingeniería Técnica en Informática de Gestión. Universidad de Jaén Departamento de Matemáticas Ingeniería Técnica en Informática de Gestión. Algebra I I Relación de problemas 3. Espacios vectoriales. 1.-Estudiar si los siguientes conjuntos forman o

Más detalles

Ejercicios de Vectores Aleatorios

Ejercicios de Vectores Aleatorios Bernardo D Auria Departamento de Estadística Universidad Carlos III de Madrid GRUPO MAGISTRAL GRADO EN INGENIERÍA DE SISTEMAS AUDIOVISUALES Otros M2 Calcular la función de densidad conjunta y las marginales

Más detalles

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES 1. Sea f : (0, + ) definida como f () = Ln a) Probar que la función derivada f es decreciente en todo su dominio. b) Determinar los intervalos de crecimiento

Más detalles

MATEMÁTICAS - 6º curso

MATEMÁTICAS - 6º curso MATEMÁTICAS 6º curso TEMA 1. OPERACIONES CON NÚMEROS NATURALES 1. Realizar sumas y restas dadas. 2. Efectuar multiplicaciones dadas. 3. Realizar divisiones dadas. 4. Clasificar las divisiones en exactas

Más detalles

La distribución normal o gaussiana es la distribución. Definición 42 Se dice que una variable X se distribuye como normal con parámetros µ y σ si

La distribución normal o gaussiana es la distribución. Definición 42 Se dice que una variable X se distribuye como normal con parámetros µ y σ si La distribución normal La distribución normal o gaussiana es la distribución continua más importante. Definición 42 Se dice que una variable X se distribuye como normal con parámetros µ y σ si f(x) = 1

Más detalles

Relación de problemas: Variables aleatorias

Relación de problemas: Variables aleatorias Estadística y modelización. Ingeniero Técnico en Diseño Industrial. Relación de problemas: Variables aleatorias 1. Se lanza tres veces una moneda y se observa el número de caras. (a) Calcula la distribución

Más detalles

4,2 + 0,67 Y c) R 2 = 0,49. 3.- En la estimación de un modelo de regresión lineal se ha obtenido:

4,2 + 0,67 Y c) R 2 = 0,49. 3.- En la estimación de un modelo de regresión lineal se ha obtenido: INTRODUCCIÓN A LA ESTADÍSTICA. Relación 4: REGRESIÓN Y CORRELACIÓN 1.- En una población se ha procedido a realizar observaciones sobre un par de variables X e Y. Xi 4 5 4 5 6 5 6 6 Yi 1 1 3 3 3 4 4 ni

Más detalles

6. ESTIMACIÓN DE PARÁMETROS

6. ESTIMACIÓN DE PARÁMETROS PROBABILIDAD Y ESTADÍSTICA Sesión 7 6. ESTIMACIÓN DE PARÁMETROS 6.1 Características el estimador 6. Estimación puntual 6..1 Métodos 6..1.1 Máxima verosimilitud 6..1. Momentos 6.3 Intervalo de confianza

Más detalles

Definición de probabilidad

Definición de probabilidad Tema 5: LA DISTRIBUCIÓN NORMAL 1. INTRODUCCIÓN A LA PROBABILIDAD: Definición de probabilidad Repaso de propiedades de conjuntos (Leyes de Morgan) Probabilidad condicionada Teorema de la probabilidad total

Más detalles

Estadística Avanzada y Análisis de Datos

Estadística Avanzada y Análisis de Datos 1-1 Estadística Avanzada y Análisis de Datos Javier Gorgas y Nicolás Cardiel Curso 2006-2007 2007 Máster Interuniversitario de Astrofísica 1-2 Introducción En ciencia tenemos que tomar decisiones ( son

Más detalles

Variables Aleatorias. Introducción

Variables Aleatorias. Introducción Variables Aleatorias Introducción Concepto de variable aleatoria Es conveniente que los resultados de un experimento aleatorio estén expresados numéricamente. Se prueban tres componentes electrónicos,

Más detalles

Grupo 23 Semestre Segundo examen parcial

Grupo 23 Semestre Segundo examen parcial Probabilidad Grupo 23 Semestre 2015-2 Segundo examen parcial La tabla siguiente presenta 20 postulados, algunos de los cuales son verdaderos y otros son falsos. Analiza detenidamente cada postulado y elige

Más detalles

Tema 3: Cálculo de Probabilidades Unidad 2: Variables Aleatorias

Tema 3: Cálculo de Probabilidades Unidad 2: Variables Aleatorias Estadística Tema 3: Cálculo de Probabilidades Unidad 2: Variables Aleatorias Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Noviembre 2010 Contenidos...............................................................

Más detalles

Probabilidades. Universidad de las Américas Instituto de Matemática, Física y Estadística. Centro de Aprendizaje Matemático - CAM

Probabilidades. Universidad de las Américas Instituto de Matemática, Física y Estadística. Centro de Aprendizaje Matemático - CAM Universidad de las Américas Instituto de Matemática, Física y Estadística. Centro de Aprendizaje Matemático - CAM Probabilidades P(A) = Casos favorables Casos posibles Objetivos: Definir el concepto de

Más detalles

ESTADÍSTICA INFERENCIAL

ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL 1 Sesión No. 7 Nombre: Distribuciones de probabilidad para variables aleatorias continuas Contextualización Al igual que la distribución binomial, la distribución

Más detalles

Tema 3: Estimadores de máxima verosimilitud

Tema 3: Estimadores de máxima verosimilitud Tema 3: Estimadores de máxima verosimilitud 1 (basado en el material de A. Jach (http://www.est.uc3m.es/ajach/) y A. Alonso (http://www.est.uc3m.es/amalonso/)) Planteamiento del problema: motivación Método

Más detalles

. Matemáticas aplicadas CCSS. Ejercicios modelo Selectividad 2000-2011

. Matemáticas aplicadas CCSS. Ejercicios modelo Selectividad 2000-2011 1. CÁLCULO DE DERIVADAS Ejercicio 1. (001) Calcule las funciones derivadas de las siguientes: Lx a) (1 punto) f ( x) = (Lx indica logaritmo neperiano de x) x 3 b) (1 punto) g( x) = (1 x ) cos x 3 1 c)

Más detalles

Probabilidades. 11 de noviembre de 2013. Felipe Bravo Márquez

Probabilidades. 11 de noviembre de 2013. Felipe Bravo Márquez Felipe José Bravo Márquez 11 de noviembre de 2013 Motivación Las probabilidades son el lenguaje de la incertidumbre que a la vez es la base de la inferencia estadística. El problema estudiado en probabilidades

Más detalles

Distribuciones de Probabilidad para Variables Aleatorias Discretas 1

Distribuciones de Probabilidad para Variables Aleatorias Discretas 1 Distribuciones de Probabilidad para Variables Aleatorias Discretas Apellidos, nombre Martínez Gómez, Mónica (momargo@eio.upv.es) Marí Benlloch, Manuel (mamaben@eio.upv.es) Departamento Centro Estadística,

Más detalles

FUNCIONES REALES DE VARIABLE REAL

FUNCIONES REALES DE VARIABLE REAL .- Halla el dominio de las siguientes funciones: a) f(x)= x b) x 4 x 3 3x f(x)= + 8x 4 x + 3x 4 x 3 x + 4x c) f(x)= x 3 x x d) 8x 3 + 3x f(x)= 7x x 9 x e) f(x)= x x f) f(x)= x + 5 x g) f(x)= x x + h) f(x)=

Más detalles

PARTE II: MUESTREO... 10 6.- CONCEPTOS BÁSICOS... 10 7.- MÉTODOS DE MUESTREO... 10 8.- NÚMERO DE MUESTRAS... 10 9.- DISTRIBUCIONES MUESTRALES...

PARTE II: MUESTREO... 10 6.- CONCEPTOS BÁSICOS... 10 7.- MÉTODOS DE MUESTREO... 10 8.- NÚMERO DE MUESTRAS... 10 9.- DISTRIBUCIONES MUESTRALES... Contenidos: PARTE I: DISTRIBUCIONES DE PROBABILIDAD... 2 1.- VARIABLES ALEATORIAS... 2 2.- DISTRIBUCIONES DE PROBABILIDAD... 3 3.- LA DISTRIBUCIÓN BINOMIAL... 5 4.- LA DISTRIBUCIÓN NORMAL... 7 5.- USO

Más detalles

Estadística. Estadística

Estadística. Estadística Definición de La trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un estudio estadístico consta de las siguientes

Más detalles

PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA DE SISTEMAS

PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA DE SISTEMAS 1 1. DATOS INFORMATIVOS PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA DE SISTEMAS MATERIA: ESTADISTICA CODIGO: 11715 CARRERA: INGENIERIA DE SISTEMAS NIVEL: TERCERO

Más detalles

TEMA 4: CONTRASTES DE HIPÓTESIS. CONCEPTOS BÁSICOS

TEMA 4: CONTRASTES DE HIPÓTESIS. CONCEPTOS BÁSICOS ASIGNATURA: ESTADÍSTICA II (Grado ADE,MIM,FBS) TEMA 4: CONTRASTES DE HIPÓTESIS. CONCEPTOS BÁSICOS 4.1. Hipótesis estadística. Tipos de hipótesis 4.2. Región crítica y región de aceptación 4.3. Errores

Más detalles

LA DISTRIBUCIÓN NORMAL

LA DISTRIBUCIÓN NORMAL LA DISTRIBUCIÓN NORMAL En estadística y probabilidad se llama distribución normal, distribución de Gauss o distribución gaussiana, a una de las distribuciones de probabilidad que con más frecuencia aparece

Más detalles

www.academiacae.com!!info@academiacae.com!!91.501.36.88!!28007!madrid!

www.academiacae.com!!info@academiacae.com!!91.501.36.88!!28007!madrid! CONTINUIDAD Y DERIVABILIDAD. TEOREMAS Y APLICACIONES DE LAS DERIVADAS 1.- junio 1994 Se sabe que y = f (x) e y = g (x) son dos curvas crecientes en x = a. Analícese si la curva y = f(x) g(x) ha de ser,

Más detalles

x R F (x) := P (X 1 (, x]) = P ({e Ω : X(e) x}) = P (X x) salvo que en este caso esta función es siempre una función continua.

x R F (x) := P (X 1 (, x]) = P ({e Ω : X(e) x}) = P (X x) salvo que en este caso esta función es siempre una función continua. PROBABILIDAD Tema 2.3: Variables aleatorias continuas Objetivos Distinguir entre variables aleatorias discretas y continuas. Dominar el uso de las funciones asociadas a una variable aleatoria continua.

Más detalles

0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5

0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 1.- Cómo utilizar la tabla de la distribución Binomial? Supongamos que lanzamos al aire una moneda trucada. Con esta moneda la probabilidad de obtener cara es del 30%. La probabilidad que salga cruz será,

Más detalles

14 Tablas y gráficos estadísticos

14 Tablas y gráficos estadísticos Tablas y gráficos estadísticos ACTIVIDADES INICIALES.I. Haz una encuesta sobre cuáles son la canción y el grupo de música preferido por compañeros de tu clase, alumnos de bachillerato y personas mayores

Más detalles

Distribuciones de Probabilidad

Distribuciones de Probabilidad Distribuciones de Probabilidad Variables Aleatorias Ahora se introducirá el concepto de variable aleatoria y luego se introducirán las distribuciones de probabilidad discretas más comunes en la práctica

Más detalles

5 DISTRIBUCIONES BINOMIAL Y DE POISSON

5 DISTRIBUCIONES BINOMIAL Y DE POISSON 5 DISTRIBUCIONES BINOMIAL Y DE POISSON La repetición sucesiva de n pruebas (ensayos) de BERNOUILLI de modo independiente y manteniendo constante la probabilidad de éxito p da lugar a la variable aleatoria

Más detalles

8.2.5. Intervalos para la diferencia de medias de dos poblaciones

8.2.5. Intervalos para la diferencia de medias de dos poblaciones 8.. INTERVALOS DE CONFIANZA PARA LA DISTRIBUCIÓN NORMAL 89 distribuye de modo gaussiana. Para ello se tomó una muestra de 5 individuos (que podemos considerar piloto), que ofreció los siguientes resultados:

Más detalles

Técnicas de Inferencia Estadística II. Tema 3. Contrastes de bondad de ajuste

Técnicas de Inferencia Estadística II. Tema 3. Contrastes de bondad de ajuste Técnicas de Inferencia Estadística II Tema 3. Contrastes de bondad de ajuste M. Concepción Ausín Universidad Carlos III de Madrid Grado en Estadística y Empresa Curso 2014/15 Contenidos 1. Introducción

Más detalles

Por ejemplo, lanzar al aire un dado o una moneda son experimentos aleatorios. Los experimentos aleatorios pueden ser simples o compuestos.

Por ejemplo, lanzar al aire un dado o una moneda son experimentos aleatorios. Los experimentos aleatorios pueden ser simples o compuestos. .- CONCEPTOS BÁSICOS DE PROBABILIDAD Experimento aleatorio: Es aquel cuyo resultado depende del azar y, aunque conocemos todos los posibles resultados, no se puede predecir de antemano el resultado que

Más detalles

ESTADÍSTICA I, curso Problemas Tema 4

ESTADÍSTICA I, curso Problemas Tema 4 ESTADÍSTICA I, curso 007-008 Problemas Tema 4 1. En un problema de una prueba aplicada a niños pequeños se les pide que hagan corresponder tres dibujos de animales con la palabra que identifica a ese animal.

Más detalles

Funciones exponenciales y logarítmicas

Funciones exponenciales y logarítmicas Funciones exponenciales y logarítmicas - Funciones exponenciales y sus gráficas Un terremoto de 85 grados en la escala de Richter es 00 veces más potente que uno de 65, por qué?, cómo es la escala de Richter?

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #16. f : A! B x 7! y = f(x):

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #16. f : A! B x 7! y = f(x): MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #16 Función Sean A y B conjuntos. Una función f de A en B es una regla que asigna a cada elemento x 2 A exactamante un elemento

Más detalles

Muestreo y Distribuciones muestrales. 51 SOLUCIONES

Muestreo y Distribuciones muestrales. 51 SOLUCIONES Muestreo y Distribuciones muestrales. 51 Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Métodos estadísticos de la ingeniería Soluciones de la hoja de problemas 5. Muestreo

Más detalles

Prueba Integral Lapso /6

Prueba Integral Lapso /6 Prueba Integral Lapso 2 009-2 76 - /6 Universidad Nacional Abierta Probabilidad y Estadística I (76) Vicerrectorado Académico Cód. Carrera: 06-20 - 508 Fecha: 2-2 - 2 009 MODELO DE RESPUESTAS Objetivos,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Junio, Ejercicio 3, Parte II, Opción A Junio, Ejercicio 3, Parte II, Opción B Reserva

Más detalles

Propuesta A. =, despeja y calcula la matriz X. (0.75 ptos)

Propuesta A. =, despeja y calcula la matriz X. (0.75 ptos) Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (015) Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumno deberá contestar a una de las dos opciones propuestas A o B. Se

Más detalles

Clase 6: Algunas Distribuciones de Probabilidad Discreta

Clase 6: Algunas Distribuciones de Probabilidad Discreta Clase 6: Algunas Distribuciones de Probabilidad Discreta Distribución Uniforme discreta La más simple de todas las distribuciones de probabilidad discreta es una donde la v.a. toma cada uno de sus valores

Más detalles

Criterios del Registro Federal de Electores en materia de verificación del apoyo ciudadano para la Consulta Popular

Criterios del Registro Federal de Electores en materia de verificación del apoyo ciudadano para la Consulta Popular Ejercicio muestral para corroborar la autenticidad de las firmas en las solicitudes de Consulta Popular El artículo 33 de la Ley General de Consulta Popular establece lo siguiente: Artículo 33. El Instituto,

Más detalles

Teoría de la decisión Estadística

Teoría de la decisión Estadística Conceptos básicos Unidad 7. Estimación de parámetros. Criterios para la estimación. Mínimos cuadrados. Regresión lineal simple. Ley de correlación. Intervalos de confianza. Distribuciones: t-student y

Más detalles

Distribuciones unidimensionales discretas

Distribuciones unidimensionales discretas Estadística II Universidad de Salamanca Curso 2011/2012 Outline 1 Distribución de Bernouilli de parámetro p 2 3 4 5 6 7 Distribución de Bernouilli de parámetro p Experimento de Bernouilli Es un experimento

Más detalles

4. Medidas de tendencia central

4. Medidas de tendencia central 4. Medidas de tendencia central A veces es conveniente reducir la información obtenida a un solo valor o a un número pequeño de valores, las denominadas medidas de tendencia central. Sea X una variable

Más detalles

UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD GUÍA 4: VARIABLES ALEATORIAS CONTINUAS Profesores: Jaime Arrué A. - Hugo S. Salinas. Primer Semestre

Más detalles

Probabilidad. Distribuciones binomial y normal

Probabilidad. Distribuciones binomial y normal Tema 7 Probabilidad. Distribuciones binomial y normal 7.1. Introducción En este tema trataremos algunas cuestiones básicas sobre Probabilidad. Tanto la Probabilidad como la Estadística son dos campos de

Más detalles

Una población es el conjunto de todos los elementos a los que se somete a un estudio estadístico.

Una población es el conjunto de todos los elementos a los que se somete a un estudio estadístico. Introducción a la Melilla Definición de La trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un estudio estadístico

Más detalles

Generación de Números Aleatorios. Modelos de Probabilidad. Introducción a la Simulación con EXCEL.

Generación de Números Aleatorios. Modelos de Probabilidad. Introducción a la Simulación con EXCEL. PRÁCTICAS DE ESTADÍSTICA 1º CURSO DE GRADO EN CC. AMBIENTALES Guión de la práctica 4: Curso 2009/2010 7/04/2010. Generación de Números Aleatorios. Modelos de Probabilidad. Introducción a la Simulación

Más detalles

EJERCICIOS PAU MAT II CC SOC. ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com.

EJERCICIOS PAU MAT II CC SOC. ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com. FUNCIONES 1- a) Dada la función:, Definida para 0, 0, encontrar el punto (x,y) que maximiza f sujeto a la restricción x+y=36. b) Calcular: Aragón 2014 Opción A Junio 2- Dada la función: Calcular: a) Dominio

Más detalles

1.2 Si a y b son enteros impares, entonces a + b es par. 1.4 Si el producto de enteros a y b es par, entonces alguno de ellos es par.

1.2 Si a y b son enteros impares, entonces a + b es par. 1.4 Si el producto de enteros a y b es par, entonces alguno de ellos es par. Sesión 1 Demostraciones Demostración directa 1.1 Si n es un número entero impar, entonces n 2 es impar. 1.2 Si a y b son enteros impares, entonces a + b es par. Demostración indirecta 1.3 Si n 2 es par,

Más detalles

Si quisiéramos estudiar también cuánto distan, es decir a b, tendríamos 6 resultados: 0, 1, 2, 3, 4 ó 5, con distribución de probabilidad dada por:

Si quisiéramos estudiar también cuánto distan, es decir a b, tendríamos 6 resultados: 0, 1, 2, 3, 4 ó 5, con distribución de probabilidad dada por: Capítulo 3 Variables aleatorias 3. Definición, tipos En ocasiones de un experimento aleatorio sólo nos interesará medir ciertas características del mismo. En estos casos nos bastará con conocer la distribución

Más detalles

Bioestadística. Curso Capítulo 3

Bioestadística. Curso Capítulo 3 Bioestadística. Curso 2012-2013 Capítulo 3 Carmen M a Cadarso, M a del Carmen Carollo, Xosé Luis Otero, Beatriz Pateiro Índice 1. Introducción 2 2. Variable aleatoria 2 2.1. Variables aleatorias discretas...............................

Más detalles

DISTRIBUCIONES DE PROBABILIDAD DISCRETA (PARTE 2)

DISTRIBUCIONES DE PROBABILIDAD DISCRETA (PARTE 2) Probabilidad DISTRIBUCIONES DE PROBABILIDAD DISCRETA (PARTE 2) Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. 4.1-1 EJEMPLO Calcular σ y σ 2 para una variable aleatoria discreta

Más detalles

Tema 5. Muestreo y distribuciones muestrales

Tema 5. Muestreo y distribuciones muestrales Tema 5. Muestreo y distribuciones muestrales Contenidos Muestreo y muestras aleatorias simples La distribución de la media en el muestreo La distribución de la varianza muestral Lecturas recomendadas:

Más detalles

TEMA N 2 RECTAS EN EL PLANO

TEMA N 2 RECTAS EN EL PLANO 2.1 Distancia entre dos puntos1 TEMA N 2 RECTAS EN EL PLANO Sean P 1 (x 1, y 1 ) y P 2 (x 2, y 2 ) dos puntos en el plano. La distancia entre los puntos P 1 y P 2 denotada por d = esta dada por: (1) Demostración

Más detalles
Sitemap