UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEPARTAMENTO DE INGENIERÍA INDUSTRIAL CONTROL #3


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEPARTAMENTO DE INGENIERÍA INDUSTRIAL CONTROL #3"

Transcripción

1 UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEPARTAMENTO DE INGENIERÍA INDUSTRIAL CURSO : IN47A GESTIÓN DE OPERACIONES PROFESOR : A. SAURÉ A. WEINTRAUB AUXILIARES : J. PASSI J. RODRÍGUEZ SEMESTRE : PRIMAVERA 2004 Pregunta 2: CONTROL #3 Considere una fábrica de colchones que abastece a una fábrica de camas, la que a su vez vende a una tienda de departamentos. La tienda de departamentos compra a la fábrica de camas utilizando una política de revisión continua, es decir, pide una cantidad Q cada vez que el inventario semanal cae bajo un nivel R. La fábrica de camas, una vez que tiene el colchón, no demora nada en armar una cama. Sin embargo, cada vez que recibe una orden demora una semana en entregar la cantidad pedida, ya que necesita este tiempo para recibir los colchones requeridos. Tanto la fábrica de camas como la de colchones funcionan con sistemas MRP. La fábrica de colchones demora una semana en fabricar colchones, con una capacidad máxima de 150 unidades por semana en tiempo regular y de 80 unidades adicionales en sobretiempo. Estas últimas a un costo unitario 30% más alto. La tienda de departamentos ha comprometida ventas para las próximas 6 semanas, las cuales se resumen en la siguiente Tabla 1. Para esto cuenta con 350 camas en bodega al comienzo de la Semana 1. Tabla 1: Ventas. Semana Demanda [unid.] Además se conocen los siguientes datos respecto a la operación de la tienda de departamentos: - Demanda promedio semanal: 100 unidades (52 semanas al año). - Desviación standard de la demanda semanal: 50 unidades. - Nivel de servicio deseado: 95% (que tiene asociado un z igual a 1,65). - Costo por orden: $ Tasa anual por llevar inventario (i): 26%. - Costo por ítem: $100.

2 a) Determine los valores de Q y R utilizados por la tienda de departamentos. Para ello, de la materia de inventarios, recordamos: Así, 2SD Q* = y R = d * L + z * σ L donde σ L L * σ ic = 2 *100 * (100 * 52) Q * = = 200 0,26 *100 R = 100 *1 + 1,65 * 50 = 182,5 183 b) Determine los pedidos que debe hacer la tienda de departamentos en las Semanas 1 a 6, si los hay. Hay que destacar que los niveles de Q y R obtenidos en la parte a) son parte de la política de inventarios de la tienda de departamentos, por lo que sólo pide una cantidad Q cuando su inventario baja de R. Para determinar los pedidos hay que hacer una tabla para poder guiarse, como la que aparece a continuación: Tienda de deptos Demanda Llegada de camas (al final) Inventario al final Pedidos al final Por lo tanto, la tienda realiza pedidos al inicio de las semanas 3, 5 y 7, todos de Q=200 (según su política de inventarios). Nota: El enunciado sólo considera las semanas 1 a 6. c) Determine los pedidos y niveles de producción de las fábricas de camas y colchones para las Semanas 1 a 6. Para ello hay que basarse en los pedidos que realiza la tienda de departamentos a la fábrica de camas y de ésta determinar los pedidos a la fábrica de colchones. Hay que destacar que al momento de llegar los pedidos recién la fábrica de camas puede planificar su producción, es decir, se supone que no comparten información. En el caso contrario, en que alguien suponga que la fábrica de camas planifica con anterioridad el pedido, se debería considerar un período de entrega cero (para ser consistentes) y modificar el punto de re-orden.

3 Determinemos los colchones necesarios (por parte de la fábrica de camas): Fábrica de camas Requerimiento Bruto Inventario Requerimiento neto Pedido de colchones Fábrica de colchones Requerimiento Bruto Inventario Requerimiento neto Plan de producción Lo anterior es sin tomar en cuenta el costo de sobretiempo. SI se tomara en cuenta el sobretiempo, el plan de la fábrica de colchones debería cambiar: Fábrica de colchones Requerimiento Bruto Inventario Requerimiento neto Plan de producción Sólo faltaría concluir respecto a qué es conveniente, sobre-tiempo o inventario. Sobre-tiempo: ( ) 1,3 100 = Inventario: ( ) i 100 Como la tasa anual por llevar inventario es menor que 30% es lógico pensar que conviene generar inventario para suplir la falta de capacidad. Pauta Pregunta 3: a) Por qué no es relevante la demanda histórica para la administración de los inventarios de materias primas y producto en proceso en un sistema MRP? Cuánta reserva de seguridad se debe llevar en este tipo de sistemas?

4 Por qué no es relevante la demanda histórica para la administración de los inventarios de materias primas y producto en proceso? Porque en un sistema MRP el ensamble y adquisición, de productos en proceso y materias primas respectivamente, son gatillados por un programa maestro que depende de la demanda que experimentan los productos finales. Cuánta reserva de seguridad se debe llevar en un sistema MRP? El stock de seguridad de un sistema MRP debe ser sólo el necesario para cubrir la incertidumbre y proteger a la empresa contra errores de pronóstico. Cómo se trata de un sistema de requerimientos lo lógico sería llevar niveles de seguridad para partes en proceso y materia prima. b) Cuáles son las condiciones de demanda más favorables para la óptima operación de un sistema JIT? Explique claramente. La operación exitosa de un Sistema JIT requiere de un programa maestro estable, que en términos de demanda se traduce en un nivel de demanda constante. Lo anterior, dado que este tipo de sistemas opera con una cuota diaria de producción la cual no permite sobreproducción. c) Defina los errores Tipo I y Tipo II. Mediante qué parámetros se definen en una curva característica de operación (OC). Qué valores de estos parámetros son más convenientes para el productor y el consumidor, respectivamente? Dentro de la administración de calidad existen dos tipos de errores Tipo II : aceptar lotes de mala calidad Tipo I: rechazar lotes de buena calidad Nota: Los tipos de errores están cambiados en los apuntes del curso, pero los alumnos fueron avisados en clases de este error.

5 Los parámetros que definen la curva son; El parámetro alfa define el error tipo I, el cual a su vez es definido por el parámetro AQL. α : Corresponde a un parámetro que indica el riesgo del productor = probabilidad (rechazar un lote cuando la fracción de defectos = AQL) El parámetro beta define el error tipo II, el cual a su vez es definido por el parámetro LTPD. β : Corresponde a un parámetro que indica el riesgo del comprador = probabilidad (aceptar un lote cuando la fracción de defectos = LTPD). Los dos puntos α,aql y β,ltpd especifican dos puntos sobre la curva OC, como está en la figura. Cuando estos dos puntos se especifican, determinan completamente la curva OC. La curva también depende de n (tamaño de la muestra) y c (número de aceptación) Si el costo de rechazar un lote bueno (con calidad <= AQL) es alto, entonces se debe escoger un valor pequeño de alfa para controlar el error tipo I (asociado al productor). En cambio, si el costo de aceptar un lote malo es alto se debe seleccionar un valor pequeño de beta para controlar el error tipo II (asociado al comprador). d) Esquematice el Ciclo de Calidad de un producto estándar. Especifique qué agentes intervienen y qué relaciones existen entre éstos. Esquema del Ciclo de Calidad Los agentes son Cliente Mercadotecnia Ingeniería Operaciones Control de Calidad Las relaciones son Cliente Mercadotecnia: Necesidad Mercadotecnia Ingeniería: Interpretación de las necesidades Ingeniería Op. y C.C.: Especificaciones Op. y CC Cliente : Producto

Unidad 7: Muestreo de aceptación

Unidad 7: Muestreo de aceptación Unidad 7: Muestreo de aceptación Cap 12. Gutiérrez Liliana Recchioni Unidad 7: 7.1. Tipos de planes de muestreo. 7.2. Variabilidad y curvas características (CO). 7.3. Diseño de un plan de muestreo simple

Más detalles

Control 3. Lunes 23 de Junio 2008

Control 3. Lunes 23 de Junio 2008 Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Industrial IN44A: Investigación Operativa Profesores: R. Caldentey, R. Epstein, P. Rey Prof. Aux.: J. Gacitúa,

Más detalles

Ejemplos de clase Administración de Inventarios

Ejemplos de clase Administración de Inventarios Ejemplos de clase Administración de Inventarios ADMINISTRACIÓN DE INVENTARIOS A. MODELOS DE INVENTARIO PARA DEMANDA INDEPENDIENTE B. MODELOS PROBABILISTICOS E INVENTARIOS DE SEGURIDAD C. SISTEMAS DE PERIODO

Más detalles

Ejemplos de clase Administración de Inventarios. Guatemala, abril de 2013

Ejemplos de clase Administración de Inventarios. Guatemala, abril de 2013 Ejemplos de clase Administración de Inventarios Guatemala, abril de 2013 ADMINISTRACIÓN DE INVENTARIOS A. MODELOS DE INVENTARIO PARA DEMANDA INDEPENDIENTE B. MODELOS PROBABILISTICOS E INVENTARIOS DE SEGURIDAD

Más detalles

Teoría de la decisión Estadística

Teoría de la decisión Estadística Conceptos básicos Unidad 7. Estimación de parámetros. Criterios para la estimación. Mínimos cuadrados. Regresión lineal simple. Ley de correlación. Intervalos de confianza. Distribuciones: t-student y

Más detalles

Facultad de Ingeniería MANEJO DE INVENTARIOS DE ÍTEMS INDIVIDUALES

Facultad de Ingeniería MANEJO DE INVENTARIOS DE ÍTEMS INDIVIDUALES Facultad de Ingeniería Escuela de Ingeniería Industrial Curso: Sistemas de almacenamiento e Inventarios MANEJO DE INVENTARIOS DE ÍTEMS INDIVIDUALES Profesor: Julio César Londoño O Sistemas con Demanda

Más detalles

ECONOMÍA DE LA EMPRESA PROBLEMAS DE UMBRAL DE RENTABILIDAD

ECONOMÍA DE LA EMPRESA PROBLEMAS DE UMBRAL DE RENTABILIDAD ECONOMÍA DE LA EMPRESA PROBLEMAS DE UMBRAL DE RENTABILIDAD 1 Los alumnos de 2º curso del IES San Saturnino, con objeto de recabar fondos para su viaje de estudios, se plantean la posibilidad de vender

Más detalles

MEZCLA DE LA MERCADOTECNIA PLAZA. MM. Verónica Bolaños López

MEZCLA DE LA MERCADOTECNIA PLAZA. MM. Verónica Bolaños López MEZCLA DE LA MERCADOTECNIA PLAZA DISTRIBUCIÓN Función comercial de poner los productos al alcance del mercado CANALES DE DISTRIBUCIÓN Son las líneas a través de las que se efectúa la función de distribución

Más detalles

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B 1. Queremos invertir una cantidad de dinero en dos tipos

Más detalles

la posición de inventario no será igual al inventario disponible cuando se coloca un pedido en términos de los inventarios disponibles 4.

la posición de inventario no será igual al inventario disponible cuando se coloca un pedido en términos de los inventarios disponibles 4. 1.- Una empresa que se dedica a la venta de bebidas gaseosas tiene una demanda anual de 3600 cajas, Una caja de bebidas le cuesta a la empresa $3.00, el costo de cada pedidos es de $ 20.00, y los costos

Más detalles

Modelo EOQ con Demanda Incierta. Teoría de Inventarios Modelo Probabilísticos. Demanda durante el Lead Time 18/04/2009

Modelo EOQ con Demanda Incierta. Teoría de Inventarios Modelo Probabilísticos. Demanda durante el Lead Time 18/04/2009 Universidad Técnica Federico Santa María Teoría de Inventarios Modelo Probabilísticos Daniel Basterrica Modelo EOQ con Demanda Incierta Lead Time no nulo Demanda aleatoria durante

Más detalles

TEMA Nº 5 CAPACIDAD DE PRODUCCIÓN

TEMA Nº 5 CAPACIDAD DE PRODUCCIÓN UNIVERSIDAD DE LOS ANDES FACULTAD DE CIENCIAS ECONÓMICAS Y SOCIALES ESCUELA DE ADMINISTRACIÓN Y CONTADURÍA PUBLICA DEPARTAMENTO DE CIENCIAS ADMINISTRATIVAS ASIGNATURA: PRODUCCIÓN I TEMA Nº 5 CAPACIDAD

Más detalles

Muestreo y estimación: problemas resueltos

Muestreo y estimación: problemas resueltos Muestreo y estimación: problemas resueltos BENITO J. GONZÁLEZ RODRÍGUEZ ([email protected]) DOMINGO HERNÁNDEZ ABREU ([email protected]) MATEO M. JIMÉNEZ PAIZ ([email protected]) M. ISABEL MARRERO RODRÍGUEZ ([email protected])

Más detalles

ANEXO Nº 1 MATRIZ DE CONGRUENCIA

ANEXO Nº 1 MATRIZ DE CONGRUENCIA ANEXO Nº 1 MATRIZ DE CONGRUENCIA Elaboración de un Sistema de Costo Estándar, para la Medición y el Control de los Costos de los Productos que se elaboran en la Cooperativa de Caficultores Jucuapense de

Más detalles

www.klasesdematematicasymas.com

www.klasesdematematicasymas.com 1. Resolver el siguiente problema por el sistema dual simplex Max Z = 0,50X 1 + 0,40X 2 2X 1 + X 2 120 2X 1 + 3X 2 240 X 1, X 2 0 El modelo estándar es: Z 0,5X 1 0,40X 2 + 0S 1 + 0S 2 = 0 2X 1 + X 2 +

Más detalles

Teorema de Bayes. mientras que B tiene una tasa de defectos del 4%.

Teorema de Bayes. mientras que B tiene una tasa de defectos del 4%. Teorema de Bayes Ejemplo: En una empresa manufacturera, una máquina A produce el 60% de la producción total, mientras que una máquina B el restante 40%. 71 El 2% de las unidades producidas por A son defectuosas,

Más detalles

ADMINISTRACIÓN DE OPERACIONES EJERCICIOS No 1. PRIMERA PREGUNTA Un vendedor puede comprar pantalones a precios referenciales.

ADMINISTRACIÓN DE OPERACIONES EJERCICIOS No 1. PRIMERA PREGUNTA Un vendedor puede comprar pantalones a precios referenciales. ADMINISTRACIÓN DE OPERACIONES EJERCICIOS No 1 PRIMERA PREGUNTA Un vendedor puede comprar pantalones a precios referenciales. Si compra 100 unidades, el costo unitario es $ 11; Si compra 200 unidades, el

Más detalles

Distribución normal. Cajón de Ciencias. www.cajondeciencias.com. Qué es una variable estadística?

Distribución normal. Cajón de Ciencias. www.cajondeciencias.com. Qué es una variable estadística? Distribución normal Cajón de Ciencias Qué es una variable estadística? Una variable estadística es un parámetro que puede variar de manera aleatoria dentro de un rango de valores. Por ejemplo, la variable

Más detalles

PROTOCOLO DE ENSAYOS PARA MÓDULOS FOTOVOLTAICOS

PROTOCOLO DE ENSAYOS PARA MÓDULOS FOTOVOLTAICOS PROTOCOLO DE ENSAYOS PARA MÓDULOS FOTOVOLTAICOS PMFV Nº 01 : XX.XX.XXXX PRODUCTO : Módulos Fotovoltaicos. NORMAS : IEC 61215 2ED 2005-04; Cualificación de diseño y tipo para módulos Fotovoltaicos de Silicio

Más detalles

MUESTREO PARA ACEPTACION

MUESTREO PARA ACEPTACION MUESTREO PARA ACEPTACION Inspección de Calidad Consiste en un procedimiento técnico que permite verificar si los materiales, el proceso de fabricación y los productos terminados cumplen con sus respectivas

Más detalles

Formulación de un Modelo de Programación Lineal

Formulación de un Modelo de Programación Lineal Formulación de un Modelo de Programación Lineal Para facilitar el planteamiento del modelo matemático general de la PL considere el siguiente problema: La planta HBB fabrica 4 productos que requieren para

Más detalles

Sistemas Electrónicos Digitales

Sistemas Electrónicos Digitales Sistemas Electrónicos Digitales Universidad de Alcalá Curso Académico 2014/2015 Curso 3º Cuatrimestre 1º Ejercicio 1 Se dispone de chips de EEPROM de 2Kx8. Realice la ampliación a 8Kx8 manteniendo una

Más detalles

Parte I: Repaso Materia.

Parte I: Repaso Materia. AYUDANTÍA 7 INTRODUCCIÓN A LA ECONOMÍA. Profesor Ricardo Paredes. Ayudante Sebastián Parot R. Otoño 2009. Parte I: Repaso Materia. 1) Producto Interno Bruto. Se entiende por Producto interno Bruto (PIB)

Más detalles

Propuesta A. 2 0 b) Dada la ecuación matricial: X = , despeja y calcula la matriz X. (0.75 ptos) 2 1

Propuesta A. 2 0 b) Dada la ecuación matricial: X = , despeja y calcula la matriz X. (0.75 ptos) 2 1 Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (015) Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumno deberá contestar a una de las dos opciones propuestas A o B. Se

Más detalles

RAZONES Y PROPORCIONES

RAZONES Y PROPORCIONES 1. Razón RAZONES Y PROPORCIONES Cuando comparemos 2 magnitudes mediante una división diremos que esas 2 magnitudes se encuentran en una razón. Por ejemplo, sean a y b dos cantidades, entonces una razón

Más detalles

La gestión de inventario preocupa a la mayoría de las empresas cualquiera sea el sector de su actividad y dimensión.

La gestión de inventario preocupa a la mayoría de las empresas cualquiera sea el sector de su actividad y dimensión. 4. MODELOS DE INVENTARIO. Comúnmente los inventarios están relacionados con la mantención de cantidades suficientes de bienes (insumos, repuestos, etc.), que garanticen una operación fluida en un sistema

Más detalles

Estadística Inferencial. Sesión 5. Prueba de hipótesis

Estadística Inferencial. Sesión 5. Prueba de hipótesis Estadística Inferencial. Sesión 5. Prueba de hipótesis Contextualización. En la práctica, es frecuente tener que tomar decisiones acerca de poblaciones con base en información de muestreo. Tales decisiones

Más detalles

Algunos conceptos microeconómicos. Tema: Elasticidad.

Algunos conceptos microeconómicos. Tema: Elasticidad. UNIVERSIDAD DEL VALLE FACULTAD DE CIENCIAS DE LA ADMINISTRACIÓN MICROECONOMÍA rograma de Contaduría ública rofesor: Uvencer Alexander Gómez I. Marzo de 008. Algunos conceptos microeconómicos. Tema: Elasticidad.

Más detalles

Contabilidad Gerencial. SESIÓN 8: Análisis estratégicos de costos e inventarios

Contabilidad Gerencial. SESIÓN 8: Análisis estratégicos de costos e inventarios Contabilidad Gerencial SESIÓN 8: Análisis estratégicos de costos e inventarios Contextualización de la Sesión 8 Para qué sirven los métodos de costeo? Para las empresas es importante conocer a fondo la

Más detalles

Contabilidad Financiera

Contabilidad Financiera Contabilidad Financiera 1 Sesión No. 8 Nombre: Inventarios Contextualización La importancia de ejercer un control eficaz de los inventarios se base en que al tener un buen manejo al controlar pedidos atrasados

Más detalles

MODELO 4. CALCULO DEL VALOR PRESENTE NETO Y LA TASA INTERNA DE RETORNO PARA UN PROYECTO DE INVERSIÓN.

MODELO 4. CALCULO DEL VALOR PRESENTE NETO Y LA TASA INTERNA DE RETORNO PARA UN PROYECTO DE INVERSIÓN. MODELO 4. CALCULO DEL VALOR PRESENTE NETO Y LA TASA INTERNA DE RETORNO PARA UN PROYECTO DE INVERSIÓN. PROPÓSITO: Diseñar un modelo en hoja de cálculo que permita calcular el Valor Presente Neto (VPN) de

Más detalles

Capítulo 3: Técnicas de Conteo Clase 1: Conteo Básico y Principio del Palomar

Capítulo 3: Técnicas de Conteo Clase 1: Conteo Básico y Principio del Palomar Capítulo 3: Técnicas de Conteo Clase 1: Conteo Básico y Principio del Palomar Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 3: Técnicas de Conteo 1 / 18 Motivación

Más detalles

RESPUESTAS: OPCIÓN B. www.profes.net es un servicio gratuito de Ediciones SM

RESPUESTAS: OPCIÓN B. www.profes.net es un servicio gratuito de Ediciones SM RESPUESTAS: OPCIÓN B 1. Explique cuál es la función del organigrama en una organización (1 punto). La función del organigrama es representar gráficamente la estructura organizativa de la empresa. En esta

Más detalles

TOMA DE DECISIONES Decisiones con Riesgo (Problemas Probabilísticos)

TOMA DE DECISIONES Decisiones con Riesgo (Problemas Probabilísticos) TOMA DE DECISIONES Decisiones con Riesgo (Problemas Probabilísticos) EJEMPLO 2: Una Compañía de Manufacturas Eléctricas que produce aparatos de aire acondicionado, tiene que decidir si comprar o no un

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E. CURSO 014-015 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC. SS. 1 - Cada alumno debe elegir sólo una de las pruebas (A o B). - Cada una de las preguntas

Más detalles

CAPÍTULO 1. Introducción. la competitividad exige actualización y mejora continua por parte de todos y cada uno

CAPÍTULO 1. Introducción. la competitividad exige actualización y mejora continua por parte de todos y cada uno CAPÍTULO 1 Introducción La ingeniería industrial ha estado en continuo desarrollo desde sus inicios y hoy en día la competitividad exige actualización y mejora continua por parte de todos y cada uno de

Más detalles

Estadística Inferencial 3.7. Prueba de hipótesis para la varianza. σ gl = n -1. Es decir: Ho: σ 2 15 Ha: σ 2 > 15 (prueba de una cola)

Estadística Inferencial 3.7. Prueba de hipótesis para la varianza. σ gl = n -1. Es decir: Ho: σ 2 15 Ha: σ 2 > 15 (prueba de una cola) UNIDAD III. PRUEBAS DE HIPÓTESIS 3.7 Prueba de hipótesis para la varianza La varianza como medida de dispersión es importante dado que nos ofrece una mejor visión de dispersión de datos. Por ejemplo: si

Más detalles

Ejercicios Tema 5. La sociedad además debe soportar los siguientes gastos: Por el seguro: 450 euros y por derechos arancelarios: 980 euros

Ejercicios Tema 5. La sociedad además debe soportar los siguientes gastos: Por el seguro: 450 euros y por derechos arancelarios: 980 euros Ejercicios Tema 5 Ejercicio 1. La sociedad ANEOR, SA adquiere 1.000 uds de mercancías por 18.000 euros, siendo los gastos de transporte de 550 euros. El proveedor concede a la sociedad un descuento por

Más detalles

Guía de Ejercicios 1 Tema: Pronósticos

Guía de Ejercicios 1 Tema: Pronósticos Ejercicio 1 Guía de Ejercicios 1 Tema: Pronósticos El fondo de inversión Plus Victory de crecimiento de acciones ha seguido los siguientes promedios mensuales de precios para los últimos 7 meses. Mes Precios

Más detalles

RIESGO Y RENDIMIENTO RIESGO Y RENDIMIENTO RIESGO Y RENDIMIENTO RIESGO Y RENDIMIENTO RIESGO Y RENDIMIENTO RIESGO Y RENDIMIENTO. M.Sc. Roberto Solé M.

RIESGO Y RENDIMIENTO RIESGO Y RENDIMIENTO RIESGO Y RENDIMIENTO RIESGO Y RENDIMIENTO RIESGO Y RENDIMIENTO RIESGO Y RENDIMIENTO. M.Sc. Roberto Solé M. FACTORES DETERMINANTES DEL PRECIO DE LAS ACCIONES: Riesgo Se puede examinar ya sea por su relación con un: Activo individual Cartera Rendimiento RIESGO: En un concepto básico es la probabilidad de enfrentar

Más detalles

MUESTREO Y MEDICIÓN MÉTODOS DE MUESTREO PROBABILÍSTICO Y NO PROBABILÍSTICO. FeGoSa

MUESTREO Y MEDICIÓN MÉTODOS DE MUESTREO PROBABILÍSTICO Y NO PROBABILÍSTICO. FeGoSa MÉTODOS DE MUESTREO PROBABILÍSTICO Y NO PROBABILÍSTICO TAMAÑO DE LA MUESTRA AL ESTIMAR LA MEDIA DE LA POBLACIÓN Al prever el intervalo de confianza resultante de una media muestral y la desviación estándar,

Más detalles

EJERCICIOS DE PRONOSTICOS

EJERCICIOS DE PRONOSTICOS EJERCICIOS DE PRONOSTICOS TÉCNICA No. 1 PROMEDIO MÓVIL SIMPLE (PMS) La empresa Barcel S.A. de C.V. desea elaborar el pronóstico de ventas (o de la demanda) para uno de sus productos de mayor demanda en

Más detalles

EL PUNTO DE EQUILIBRIO

EL PUNTO DE EQUILIBRIO EL PUNTO DE EQUILIBRIO El punto de equilibrio sirve para determinar el volumen mínimo de ventas que la empresa debe realizar para no perder, ni ganar. En el punto de equilibrio de un negocio las ventas

Más detalles

Selectividad Junio 2007 JUNIO 2007

Selectividad Junio 2007 JUNIO 2007 Bloque A JUNIO 2007 1.- Julia, Clara y Miguel reparten hojas de propaganda. Clara reparte siempre el 20 % del total, Miguel reparte 100 hojas más que Julia. Entre Clara y Julia reparten 850 hojas. Plantea

Más detalles

Actividad Final ESTADÍSTICA INFERENCIAL

Actividad Final ESTADÍSTICA INFERENCIAL Actividad Final ESTADÍSTICA INFERENCIAL Aplicando conocimientos A. PRESENTACIÓN Para finalizar el curso de Estadística Inferencial tendrás que elaborar una actividad final en donde aplicarás los conocimientos

Más detalles

Población finita. reemplazo sobre poblaciones de tamaño finito N.

Población finita. reemplazo sobre poblaciones de tamaño finito N. Población finita 171 El TCL y las varianzas muestrales de medias y proporciones se basan en la premisa de muestras seleccionadas con reemplazo o de una población infinita. Sin embargo, en muchos estudios

Más detalles

Distribución muestral de proporciones. Algunas secciones han sido tomadas de: Apuntes de Estadística Inferencial Instituto Tecnológico de Chiuhuahua

Distribución muestral de proporciones. Algunas secciones han sido tomadas de: Apuntes de Estadística Inferencial Instituto Tecnológico de Chiuhuahua Distribución muestral de proporciones Algunas secciones han sido tomadas de: Apuntes de Estadística Inferencial Instituto Tecnológico de Chiuhuahua Distribución muestral de Proporciones Existen ocasiones

Más detalles

Unidad: Aceleración. http://www.galeriagalileo.cl 1

Unidad: Aceleración. http://www.galeriagalileo.cl 1 Unidad: Aceleración Ahora que entendemos que significa que un auto se mueva rápido o despacio en un movimiento rectilíneo uniforme, veremos la relación que existe entre el cambio de rapidez y el concepto

Más detalles

Tema # 14. Universidad Tec Milenio: Profesional CA04003 Cadena de Suministro. Al finalizar el tema serás capaz de:

Tema # 14. Universidad Tec Milenio: Profesional CA04003 Cadena de Suministro. Al finalizar el tema serás capaz de: Tema # 14 Proceso de Producción Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Determinar el proceso de producción. D.R. Universidad TecMilenio 1 Introducción del tema Al haber leído

Más detalles

El Punto de Equilibrio como herramienta de Planeación Táctica (Corto Plazo)

El Punto de Equilibrio como herramienta de Planeación Táctica (Corto Plazo) TEMARIO El Punto de Equilibrio como herramienta de Planeación Táctica (Corto Plazo) Además del estudio del Análisis e Interpretación de Estados Financieros, el Punto de Equilibrio (PE), nos sirve para

Más detalles

lineales con competencias http://udc.georgetown.org/development-manual/

lineales con competencias http://udc.georgetown.org/development-manual/ Aplicación de ecuaciones lineales con competencias http://udc.georgetown.org/development-manual/ INSTRUCCIONES: http://www.iclipart.com Lee atentamente cada punto en el planteamiento del problema, porque

Más detalles

GUÍA DE EJERCICIOS 3 MACROECONOMÍA

GUÍA DE EJERCICIOS 3 MACROECONOMÍA GUÍA DE EJERCICIOS 3 MACROECONOMÍA I Comente las siguientes afirmaciones 1 : 1. Comente la siguiente afirmación: es evidente que la relación entre la tasa de interés y la inversión es positiva Falso. La

Más detalles

Si Le = tiempo de entrega efectivo entre el momento en que se hace un pedido y el. Le = L n t * 0, t 0 = y * / D, n = Entero más grande L/ t 0

Si Le = tiempo de entrega efectivo entre el momento en que se hace un pedido y el. Le = L n t * 0, t 0 = y * / D, n = Entero más grande L/ t 0 CAPITULO 5: PROGRAMACIÓN DE MODELOS DE POLÍTICAS DE INVENTARIOS 5.1 Programación de Modelo EOQ en Excel El modelo EOQ clásico calcula la cantidad que debe pedirse o producirse minimizando los costos de

Más detalles

Gestión y Control de Stocks

Gestión y Control de Stocks Gestión y Control de Stocks Posición del inventario Una decisión de ordenar no debe estar basada solamente en el stock disponible (on-hand). IP= stock en mano+ordenes que aún no llegan-ruptura de stock.

Más detalles

PROBABILIDAD Y ESTADÍSTICA. Sesión 5 (En esta sesión abracamos hasta tema 5.8)

PROBABILIDAD Y ESTADÍSTICA. Sesión 5 (En esta sesión abracamos hasta tema 5.8) PROBABILIDAD Y ESTADÍSTICA Sesión 5 (En esta sesión abracamos hasta tema 5.8) 5 DISTRIBUCIONES DE PROBABILIDAD CONTINUAS Y MUESTRALES 5.1 Distribución de probabilidades de una variable aleatoria continua

Más detalles

Técnicas de planeación y control. Sesión 10: El valor esperado y su papel para evaluar diferentes resultados de métodos para presupuestos

Técnicas de planeación y control. Sesión 10: El valor esperado y su papel para evaluar diferentes resultados de métodos para presupuestos Técnicas de planeación y control Sesión 10: El valor esperado y su papel para evaluar diferentes resultados de métodos para presupuestos Contextualización Esta semana cerramos la unidad dedicada a la planeación,

Más detalles

PLAN DE NEGOCIOS NOMBRE DE LA EMPRESA:

PLAN DE NEGOCIOS NOMBRE DE LA EMPRESA: PLAN DE NEGOCIOS NOMBRE DE LA EMPRESA: FECHA: INDICE DE CONTENIDO Resumen Ejecutivo. 1. Descripción General del Negocio 1.1. Naturaleza de la Empresa 2. La Organización 2.1 Misión 2.2 Visión 2.3 Objetivos

Más detalles

6. ESTIMACIÓN DE PARÁMETROS

6. ESTIMACIÓN DE PARÁMETROS PROBABILIDAD Y ESTADÍSTICA Sesión 7 6. ESTIMACIÓN DE PARÁMETROS 6.1 Características el estimador 6. Estimación puntual 6..1 Métodos 6..1.1 Máxima verosimilitud 6..1. Momentos 6.3 Intervalo de confianza

Más detalles

COMPARACIÓN DE SUPERFICIES DE RESPUESTA CON BÚSQUEDA TABÚ Y ALGORITMOS GENÉTICOS

COMPARACIÓN DE SUPERFICIES DE RESPUESTA CON BÚSQUEDA TABÚ Y ALGORITMOS GENÉTICOS 71 CAPITULO 5 COMPARACIÓN DE SUPERFICIES DE RESPUESTA CON BÚSQUEDA TABÚ Y ALGORITMOS GENÉTICOS En este capítulo se presentan los resultados obtenidos y los comentarios de éstos, al correr algunos ejemplos

Más detalles

SISTEMAS DE INVENTARIO

SISTEMAS DE INVENTARIO SISTEMAS DE INVENTARIO 1 Sistemas de inventario http://www.scribd.com/doc/525918/sistemas-de-inventarios Mantener un inventario (existencia de bienes) para su venta o uso futuro es una práctica común en

Más detalles

D.2 ANÁLISIS ESTADÍSTICO DE LAS TEMPERATURAS DE VERANO

D.2 ANÁLISIS ESTADÍSTICO DE LAS TEMPERATURAS DE VERANO Anejo Análisis estadístico de temperaturas Análisis estadístico de temperaturas - 411 - D.1 INTRODUCCIÓN Y OBJETIVO El presente anejo tiene por objeto hacer un análisis estadístico de los registros térmicos

Más detalles

PP04002 Planeación de Plantas Industriales. Objetivo de aprendizaje del tema

PP04002 Planeación de Plantas Industriales. Objetivo de aprendizaje del tema PP04002 Planeación de Plantas Industriales Tema 2. Estrategias en la planeación de las instalaciones industriales Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Distinguir las diferentes

Más detalles

Atributos Los atributos son las columnas de un relación y describen características particulares de ella.

Atributos Los atributos son las columnas de un relación y describen características particulares de ella. Unidad III: Modelo relacional 3.1 Estructura básica Tablas El modelo relacional proporciona una manera simple de representar los datos: una tabla bidimensional llamada relación. título año duración tipo

Más detalles

La simulación implica construir una replica de algún sistema real y usarlo bajo condiciones de prueba

La simulación implica construir una replica de algún sistema real y usarlo bajo condiciones de prueba Simulación Simulación La simulación implica construir una replica de algún sistema real y usarlo bajo condiciones de prueba Los modelos matemáticos se construyen y utilizan para comprobar los resultados

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:

Más detalles

CONCESIONARIOS. Manual de Pedidos y Despacho de Combustibles

CONCESIONARIOS. Manual de Pedidos y Despacho de Combustibles CONCESIONARIOS Manual de Pedidos y Despacho de Combustibles 2 PORQUÉ ES IMPORTANTE TENER SERVICIOS DE DESPACHO? Al poder ordenar la demanda de los despachos de combustible, es posible dar un mejor servicio

Más detalles

Test de Kolmogorov-Smirnov

Test de Kolmogorov-Smirnov Test de Kolmogorov-Smirnov Georgina Flesia FaMAF 2 de junio, 2011 Test de Kolmogorov-Smirnov El test chi-cuadrado en el caso continuo H 0 : Las v.a. Y 1, Y 2,..., Y n tienen distribución continua F. Particionar

Más detalles

Prueba de hipótesis. 1. Considerando lo anterior específica: a. La variable de estudio: b. La población: c. El parámetro. d. Estimador puntual:

Prueba de hipótesis. 1. Considerando lo anterior específica: a. La variable de estudio: b. La población: c. El parámetro. d. Estimador puntual: Prueba de hipótesis Problema Un grupo de profesores, de cierto estado de la república, plantea una investigación acerca del aprendizaje de las ciencias naturales en la escuela primaria. Uno de los objetivos

Más detalles

USO DE LA CALCULADORA EN LA ENSEÑANZA DE LAS MATEMÁTICAS EN LA ESCUELA SECUNDARIA

USO DE LA CALCULADORA EN LA ENSEÑANZA DE LAS MATEMÁTICAS EN LA ESCUELA SECUNDARIA USO DE LA CALCULADORA EN LA ENSEÑANZA DE LAS MATEMÁTICAS EN LA ESCUELA SECUNDARIA En la enseñanza de las matemáticas la calculadora básica o graficadora puede ayudar a que los estudiantes refinen sus conjeturas

Más detalles

Módulo 6. Medición del Desempeño

Módulo 6. Medición del Desempeño Módulo 6 Medición del Desempeño Profesor: Sergio Pernice Medición del Desempeño Asignación de autoridad Medición del Desempeño Política Compensatoria 2 2 1 Medición del Desempeño La evaluación del desempeño

Más detalles

EJERCICIO 16 LA COMPETENCIA PERFECTA. La función de demanda siguiente es la misma para todos los compradores: P = -20q + 164

EJERCICIO 16 LA COMPETENCIA PERFECTA. La función de demanda siguiente es la misma para todos los compradores: P = -20q + 164 EJERCICIO 16 LA COMPETENCIA PERFECTA El modelo de competencia perfecta es uno de los modelos de mercado más importantes en microeconomía. En este ejercicio analizamos dicho modelo. * Consideremos una situación

Más detalles

Interrogación 1. 1.- (25 Ptos.) Conteste verbalmente las siguientes preguntas :

Interrogación 1. 1.- (25 Ptos.) Conteste verbalmente las siguientes preguntas : P. Universidad Católica de Chile Dpto. de Ingeniería de Sistemas Modelos Estocásticos Profesor Alvaro Alarcón 07 de Septiembre de 2009 Interrogación 1 1.- (25 Ptos.) Conteste verbalmente las siguientes

Más detalles

5. CONTROL DE INVENTARIOS DE ÍTEMS INDIVIDUALES CON DEMANDA PROBABILÍSTICA

5. CONTROL DE INVENTARIOS DE ÍTEMS INDIVIDUALES CON DEMANDA PROBABILÍSTICA Fundamentos de Gestión de Inventarios. Capítulo 5: Control de inventarios con demanda probabilística 133 5. CONTROL DE INVENTARIOS DE ÍTEMS INDIVIDUALES CON DEMANDA PROBABILÍSTICA 5.1 INTRODUCCIÓN En el

Más detalles

Distribución Normal Curva Normal distribución gaussiana

Distribución Normal Curva Normal distribución gaussiana Distribución Normal La distribución continua de probabilidad más importante en todo el campo de la estadística es la distribución normal. La distribución normal tiene grandes aplicaciones prácticas, en

Más detalles

en 200 días aplicando el T.C.L o convergencia de la Poisson

en 200 días aplicando el T.C.L o convergencia de la Poisson EJERCICIOS T13- APLICACIONES DE LA PROBABILIDAD: CONVERGENCIA Y TEOREMAS LÍMITE 1. En una fábrica la probabilidad de que se produzcan n piezas defectuosas sigue una distribución de Poisson de media 3 diarias.

Más detalles

1. Qué representa el coste financiero de un inventario?

1. Qué representa el coste financiero de un inventario? ECONOMÍA DE LA EMPREA LICEO LUI BUÑUEL CUETIONE REUELTA UNIDAD 6 1. ué representa el coste financiero de un inventario? Coste financiero; representa la cantidad de dinero que la empresa podría tener si

Más detalles

El supermercado XYZ desea conocer el comportamiento del mismo en una sola hora de un día típico de trabajo.

El supermercado XYZ desea conocer el comportamiento del mismo en una sola hora de un día típico de trabajo. El supermercado XYZ desea conocer el comportamiento del mismo en una sola hora de un día típico de trabajo. El supermercado cuenta con 3 departamentos: Abarrotes, Embutidos y. Solamente el Departamento

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Tema 8 Distribución normal estándar y distribuciones relacionadas Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Explicar los conceptos de la distribución

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E. CURSO 01-013 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC. SS. - Cada alumno debe elegir sólo una de las pruebas (A o B). - Cada una de las preguntas

Más detalles

Manejo de Entrada-Salida. Arquitectura de Computadoras

Manejo de Entrada-Salida. Arquitectura de Computadoras Manejo de Entrada-Salida Arquitectura de Computadoras Agenda 1.2.3.1Módulos de entrada/salida. 1.2.3.2Entrada/salida programada. 1.2.3.3Entrada/salida mediante interrupciones. 1.2.3.4Acceso directo a memoria.

Más detalles

Contabilidad de costos. Tema 1. Introducción a la contabilidad. Tipos de costos LAR

Contabilidad de costos. Tema 1. Introducción a la contabilidad. Tipos de costos LAR CONTABILIDAD DE COSTOS La contabilidad de costos es un sistema de información para predeterminar, registrar, acumular, distribuir, controlar, analizar, interpretar e informar de los costos de producción,

Más detalles

EJERCICIOS TEÓRICO - PRÁCTICOS

EJERCICIOS TEÓRICO - PRÁCTICOS EJERCICIOS TEÓRICO - PRÁCTICOS A l concluir el tema, el lector estará en capacidad de: Saber trazar curvas de oferta individuales y de mercado a partir de una tabla de valores. Obtener la curva de oferta

Más detalles

Nombre: Presupuesto de producción y costo de ventas

Nombre: Presupuesto de producción y costo de ventas Presupuestos 1 Sesión No. 8 Nombre: Presupuesto de producción y costo de ventas Contextualización Anteriormente aprendimos acerca del pronóstico de ventas basado en las estrategias y fuerzas del mercado.

Más detalles

Instituto Tecnológico de Costa Rica

Instituto Tecnológico de Costa Rica Instituto Tecnológico de Costa Rica Curso: Presupuesto y control financiero Primer semestre 2007 Prof: : Lic. Arnoldo Araya L., MBA PRESUPUESTO DE EFECTIVO Es vital la información n de los flujos de efectivo

Más detalles

3. VARIABLES ALEATORIAS

3. VARIABLES ALEATORIAS . VARIABLES ALEATORIAS L as variables aleatorias se clasiican en discretas y continuas, dependiendo del número de valores que pueden asumir. Una variable aleatoria es discreta si sólo puede tomar una cantidad

Más detalles

ANÁLISIS VERTICAL análisis vertical.

ANÁLISIS VERTICAL análisis vertical. ANÁLISIS VERTICAL El análisis vertical consiste en determinar la participación de cada una de las cuentas del estado financiero, con referencia sobre el total de activos o total de pasivos y patrimonio

Más detalles

VALOR PRESENTE Y COSTO DE OPORTUNIDAD DEL CAPITAL ( Brealey & Myers)

VALOR PRESENTE Y COSTO DE OPORTUNIDAD DEL CAPITAL ( Brealey & Myers) CAPÍTULO 2 VALOR PRESENTE Y COSTO DE OPORTUNIDAD DEL CAPITAL ( Brealey & Myers) Como se comentó en el capítulo anterior, las empresas invierten en activos ya sean tangibles o intangibles. Pero es muy importante

Más detalles

TALLER 5 : Modelos de Inventarios. 1. Modelo EOQ. Un hospital que presta sus servicios a una mediana ciudad, pide a un proveedor películas de rayos x en lotes iguales. Los registros muestran que la demanda

Más detalles

METODO SIMPLEX ANALISIS DE SENSIBILIDAD Y DUALIDAD

METODO SIMPLEX ANALISIS DE SENSIBILIDAD Y DUALIDAD METODO SIMPLEX ANALISIS DE SENSIBILIDAD Y DUALIDAD Análisis de sensibilidad con la tabla simplex El análisis de sensibilidad para programas lineales implica el cálculo de intervalos para los coeficientes

Más detalles

1 Sistema de información de ejemplo.

1 Sistema de información de ejemplo. 1 Sistema de información de ejemplo. En este capítulo se describe el diseño de una pequeña base de datos, denominada Compras, que se utiliza en el curso como ayuda a las explicaciones de funcionamiento

Más detalles

3ª Colección Tema 3 La elasticidad y sus aplicaciones

3ª Colección Tema 3 La elasticidad y sus aplicaciones Cuestiones y problemas de Introducción a la Teoría Económica Carmen olores Álvarez Albelo Miguel Becerra omínguez Rosa María Cáceres Alvarado María del Pilar Osorno del Rosal Olga María Rodríguez Rodríguez

Más detalles

1.3 Describa brevemente como opera el 74123 y realice un diagrama interno de éste circuito integrado.

1.3 Describa brevemente como opera el 74123 y realice un diagrama interno de éste circuito integrado. ITESM, Campus Monterrey Laboratorio de Electrónica Industrial Depto. de Ingeniería Eléctrica Práctica 1 Instrumentación y Objetivos Particulares Conocer las características, principio de funcionamiento

Más detalles

Cálculo del tamaño de la muestra

Cálculo del tamaño de la muestra Cuantos pacientes necesitamos para demostrar... Un valor confiable (% o cuantitativo) Una diferencia confiable Entre proporciones Entre valores cuantitativos Entre eventos en el seguimiento Entre lo que

Más detalles

ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250)

ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250) Universidad Central de Venezuela Facultad de Ingeniería Ciclo Básico Departamento de Matemática Aplicada ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250) Semestre 1-2011 Mayo 2011 Álgebra Lineal y Geometría

Más detalles

GRÁFICAS DE FUNCIÓN PRODUCTIVA (Ejemplos)

GRÁFICAS DE FUNCIÓN PRODUCTIVA (Ejemplos) GRÁFICAS DE FUNCIÓN PRODUCTIVA (Ejemplos) 1 2 3a 3b 4 5a 1 6 5b 7 8a 8b 9 2 10 11a 11b 12a 12b 13 3 PRÁCTICAS DE FUNCIÓN PRODUCTIVA (Modelos) 1. FUNCIÓN DE PRODUCCIÓN (Producto marginal) Máquinas Gorros/día

Más detalles

Relación 1. Sucesos y probabilidad. Probabilidad condicionada.

Relación 1. Sucesos y probabilidad. Probabilidad condicionada. Relación. Sucesos y probabilidad. Probabilidad condicionada.. Sean A, B y C tres sucesos cualesquiera. Determine expresiones para los siguientes sucesos: Ocurre sólo A. Ocurren A y B pero no C. c) Ocurren

Más detalles

A = A < θ R = A + B + C = C+ B + A. b) RESTA O DIFERENCIA DE VECTORES ANÁLISIS VECTORIAL. Es una operación que tiene por finalidad hallar un

A = A < θ R = A + B + C = C+ B + A. b) RESTA O DIFERENCIA DE VECTORES ANÁLISIS VECTORIAL. Es una operación que tiene por finalidad hallar un ANÁLISIS VECTORIAL MAGNITUD FÍSICA Es todo aquello que se puede medir. CLASIFICACIÓN DE MAGNITUDES POR NATURALEZA MAGNITUD ESCALAR: Magnitud definida por completo mediante un número y la unidad de medida

Más detalles

ESTADÍSTICA INFERENCIAL

ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL 1 Sesión No. 9 Nombre: Pruebas de hipótesis referentes al valor de la media de la población Contextualización Los métodos estadísticos y las técnicas de

Más detalles

Planteamiento de problemas de programación lineal. M. En C. Eduardo Bustos Farías

Planteamiento de problemas de programación lineal. M. En C. Eduardo Bustos Farías Planteamiento de problemas de programación lineal M. En C. Eduardo Bustos Farías 1 Objetivo Analizar diferentes ejemplos del uso de la metodología de la Investigación de Operaciones para el planteamiento

Más detalles

Contabilidad de Costos

Contabilidad de Costos Contabilidad de Costos CONTABILIDAD DE COSTOS 1 Sesión No. 5 Nombre: Costeo de Productos y Servicios Contextualización Qué métodos existen para los costos? El estudio de los sistemas de costeo es de gran

Más detalles