Respuesta: ( 1; 2] [ [3; 1)


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Respuesta: ( 1; 2] [ [3; 1)"

Transcripción

1 UNIVERSIDAD MAYOR DE SAN SIMON FACULTAD DE CIENCIAS Y TECNOLOGIA DIRECCION DE POSTGRADO - CARRERA DE FISICA DIPLOMADO EN FISICA MODULO MATEMATICAS PRUEBA DE EVALUACION (16 de Junio de 016) Apellido Paterno Apellido Materno Nombres Determinar todos los intervalos de los números que satisfacen las siguientes desigualdades (1) a) j16 j b) ( + )( 6) 0 a) j16 j ; j j ; j j 1 La distancia de a, es maor o igual a 1:Entonces ; o 5: Respuesta: ( 1; ] [ [5; 1) b) ( + )( 6) 0 ; para que un producto sea maor o igual a 0, los dos factores deben ser a la vez o maores o iguales a cero; o menores o iguales a cero. Si ;se tiene ;de donde se conclue que Si ;se tiene ;de donde se conclue que Respuesta: ( 1; ] [ [; 1)... () Si = + 5, donde es el tiempo, posición; a) Dando algunos valores a hallando los valores respectivos de, bosquejar la grá ca de la función. b) Describir el movimiento de la partícula en el intervalo de tiempo [ ; 5], determinando a la vez la distancia total recorrida en dicho intervalo. a)

2 f() = + 5 f(5) = 10 b) Para = 5 la partícula está ubicada en = 19; hasta llegar el tiempo a = 1, aumenta su posición hasta = 6; disminuendo contínuamente su velocidad hasta bajar a 0: Desde = 1 hasta = 5, disminue su posición (aumentando cada vez su velocidad) hasta llegar a = 10. La distancia total recorrida es: de 19 a 6 recorre 5 unidades; de 6 a 10 recorre 16 unidades; haciendo un total de 1unidades recorridas.... () Sea = f() = 8 una ecuación de movimiento. a) derivar f() para encontrar d d : b) Determinar los intervalos de tiempo donde d d > 0, d d < 0, d d = 0. e indicar cuál es el comportamiento del movimiento en tales intervalos. a) d d = b) d d = > 0 ; 1 > 0 ; de donde > 1 ó < 1. d d = 1 < 0 ; d de donde 1 < < 1. = 0, se tiene = 1 ó = 1 d = Donde d > 0, a medida que aumenta el tiempo, la posición de la partícula va d aumentando (es decir, se mueve hacia el norte en el grá co). Donde d < 0, a medida d que aumenta el tiempo, la posición de la partícula va disminuendo (es decir, se mueve hacia el sur en el grá co). Cuando d = 0 ( = 1) la partícula está en "reposo", en d este caso da un cambio en la dirección de su movimiento... () a) Determinar la ecuación de la recta que pasa por los puntos ( 5; 1) (; 0) gra carla. b) Cuál es el signi cado físico del valor de la pendiente de la recta? d) Qué tiempo le llevará recorrer una distancia de 100 unidades?..

3 a) La pendiente de la recta es m = = 1 7 Y su ecuación 0 = 1 7 ( ) ; + 7 = ; = ms b) La pendiente es la velocidad (en este caso, constante e igual a 7 seg ) del movimiento de la partícula; cada 7 segundos que aumenta el tiempo, su posición disminue en 1;osea, se dirige al sur 1 d) Como e = vt, 100 = 1 7t ; t = = 700:Entonces 100unidades lo recorrerá en 700segundos.... (5) a) Cuál es la ecuación de la circunferencia con centro (0; ) radio R =?:, qué gura es su grá ca?. b) Cuál es la ecuación de movimiento cua grá ca es la semicircunferencia superior?. c) Describir el movimiento de la partícula en el intervalo de tiempo [ ; 5] : d) Determinar el desplazamiento la distancia recorrida por la partícula en dicho intervalo de tiempo? a) Ecuación es + ( + ) = 16 + ( + ) = 16

4 b) ( + ) = 16 ; = p 16 :La ecuación de movimiento cua grá ca es la semicircunferencia superior,es = + p 16 c) La partícula solamente se mueve en el intervalo de tiempo [ ; ] :Durante el intervalo [ ; 0], aumenta su posición desde = hasta = 0; durante el intervalo [0; ], disminue su posición desde = 0 hasta =. d) Su movimiento se inicia en = conclue en el mismo punto = :Por tanto su desplazamiento es 0. Mientras que su distancia recorrida es 8 unidades.... (6) a) Cuál es la ecuación de la circunferencia con centro (0; 6) radio R =?: b) Cuál es la ecuación de movimiento cua grá ca es la semicircunferencia inferior?. c) Describir el movimiento de la partícula en el intervalo de tiempo [ ; ] : d) Determinar el desplazamiento la distancia recorrida por la partícula en dicho intervalo de tiempo Solución semejante al ejercicio (7) Veri cación de que la integral de la velocidad en un intervalo [a; b] es igual al desplazamiento en dicho intervalo Para = + veri cación para el intervalo de : [ ; ] : a) Mediante la grá ca de la ecuación de movimiento determinar el desplazamiento respectivo b) En la grá ca de la velocidad (instantánea) d, determinar el área en el intervalo d correspondiente -emplee la tabla-, (aunque no es necesario porque a lo tiene como dato). Y compare sus resultados. a) = +

5 El desplazamiento es igual a () ( ) = 19 = 15 b) Como d d =, el desplazamiento es igual a Z ( )d = 15 pues : R ( )d = + j = + j = = 19 = (8) Mediante la fórmula Z b a f()d = F (b) F (a) () df () donde = f(), se calcula el área por debajo (o por encima) de la grá ca de f(): d Tome f() = + en el intervalo [0; ] : a) Calcule (*). b) Evalue, aproimadamente, el área realizando la grá ca en una hoja cuadriculada "contando" las unidades cuadradas (parte inferior se toma como área negativa área superior como área positiva). Compare sus resultados a) R 0 ( + )d = ( + ) j = ( + ) j =0 = 16 = 5: b) = +

6 En este caso no eiste área negativa; se ve claramente que el área buscada es el doble de lo que ha por encima del eje X, en el intervalo [0; ] : Dividiendo cada cuadrado unidad en partes, se puede aproimar el valor del área al resultado obtenido por la integral.

1. Línea Recta 2. 2. Rectas constantes 3 2.1. Rectas horizontales... 3 2.2. Rectas verticales... 4

1. Línea Recta 2. 2. Rectas constantes 3 2.1. Rectas horizontales... 3 2.2. Rectas verticales... 4 Líneas Rectas Contenido. Línea Recta. Rectas constantes.. Rectas horizontales.............................. Rectas verticales.............................. Rectas con ecuación y = ax.. Rectas con a > 0................................

Más detalles

iii. ( 1; 1) [ (1; 5) [ (5; 1)

iii. ( 1; 1) [ (1; 5) [ (5; 1) UPR Departamento de Ciencias Matemáticas RUM MATE 37 Primer Eamen Parcial 8 de febrero de 00 Nombre: # Estudiante: Profesor: Sección: Instrucciones: Lea cada pregunta minuciosamente. No se permite el uso

Más detalles

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca Ejercicio: 4. 4. El intervalo abierto (,) es el conjunto de los números reales que verifican: a). b) < . - Intervalo abierto (a,b) al conjunto de los números reales, a < < b. 4. El intervalo

Más detalles

e. Ninguna de las anteriores

e. Ninguna de las anteriores uupr Departamento de Ciencias Matemáticas RUM MATE Tercer Eamen Parcial de noviembre de 0 Nombre: # Estudiante: Profesor: Sección: Instrucciones: Lea cada pregunta minuciosamente. No se permite el uso

Más detalles

Cálculo Diferencial e Integral - Recta tangente y velocidad. Farith J. Briceño N.

Cálculo Diferencial e Integral - Recta tangente y velocidad. Farith J. Briceño N. Cálculo Diferencial e Integral - Recta tangente y velocidad. Farit J. Briceño N. Objetivos a cubrir Código : MAT-CDI.7 Problema: Recta tangente a una curva en un punto 0. Problema: Velocidad promedio y

Más detalles

MOVIMIENTO UNIFORMEMENTE ACELERADO

MOVIMIENTO UNIFORMEMENTE ACELERADO MOVIMIENTO UNIFORMEMENTE ACELERADO El movimiento rectilíneo uniformemente aceleradoes un tipo de movimiento frecuente en la naturaleza. Una bola que rueda por un plano inclinado o una piedra que cae en

Más detalles

d. x 1 e. Ninguna de las anteriores b. 1 c. 3 d. 2 e. Ninguna de las anteriores d. ( 3; 2) e. Ninguna de las anteriores d.

d. x 1 e. Ninguna de las anteriores b. 1 c. 3 d. 2 e. Ninguna de las anteriores d. ( 3; 2) e. Ninguna de las anteriores d. UNIVERSIDAD DE PUERTO RICO, RECINTO DE MAYAGUEZ DEPARTAMENTO DE CIENCIAS MATEMATICAS EXAMEN DEPARTAMENTAL FINAL: PRE-CALCULO I, MATE 7 NOMBRE: NUM. DE ESTUDIANTE: SECCION: PROFESOR: El plagio no está permitido.

Más detalles

UPR Departamento de Ciencias Matemáticas RUM MATE 3171 Primer Examen Parcial 21 de octubre de 2010

UPR Departamento de Ciencias Matemáticas RUM MATE 3171 Primer Examen Parcial 21 de octubre de 2010 UPR Deartamento de Ciencias Matemáticas RUM MATE 37 Primer Eamen Parcial de octubre de 00 Nombre: # Estudiante: Profesor: Sección: Instrucciones: Lea cada regunta minuciosamente. No se ermite el uso de

Más detalles

TEMA 8 GEOMETRÍA ANALÍTICA

TEMA 8 GEOMETRÍA ANALÍTICA Tema 8 Geometría Analítica Matemáticas 4º ESO TEMA 8 GEOMETRÍA ANALÍTICA RELACIÓN ENTRE PUNTOS DEL PLANO EJERCICIO : Halla el punto medio del segmento de extremos P, y Q4,. Las coordenadas del punto medio,

Más detalles

GUÍA ESCOLAR DE APRENDIZAJE

GUÍA ESCOLAR DE APRENDIZAJE GUÍA ESCOLAR DE APRENDIZAJE Asignatura: FÍSICA_ DESEMPEÑOS COGNITIVO a. Relaciona las diferentes fuerzas que actúan sobre los cuerpos en reposo o en movimiento, con las ecuaciones del movimiento rectilíneo

Más detalles

1.- CONCEPTO DE FUNCIÓN

1.- CONCEPTO DE FUNCIÓN .- CONCEPTO DE FUNCIÓN Actividades del alumno/a Explica porqué la siguiente gráfica no corresponde a una función: Porque a un valor de x, por ejemplo x =, le corresponde más de un valor de y. .- CONCEPTO

Más detalles

Guía Práctica N 11 ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA

Guía Práctica N 11 ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA Fuente: PreUniversitario Pedro de Valdivia Guía Práctica N 11 ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA Una ecuación de segundo grado es una ecuación susceptible de llevar a la forma a + b + c = 0,

Más detalles

3. Funciones y gráficas

3. Funciones y gráficas Componente: Procesos físicos. Funciones gráficas.1 Sistemas coordenados En la maoría de estudios es necesario efectuar medidas relacionadas con los factores que intervienen en un fenómeno. Los datos que

Más detalles

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES 1. Sea f : (0, + ) definida como f () = Ln a) Probar que la función derivada f es decreciente en todo su dominio. b) Determinar los intervalos de crecimiento

Más detalles

3.3 Funciones crecientes y decrecientes y el criterio de la primera derivada

3.3 Funciones crecientes y decrecientes y el criterio de la primera derivada SECCIÓN. Funciones crecientes decrecientes el criterio de la primera derivada 79. Funciones crecientes decrecientes el criterio de la primera derivada Determinar los intervalos sobre los cuales una función

Más detalles

EL MOVIMIENTO Y SU DESCRIPCIÓN

EL MOVIMIENTO Y SU DESCRIPCIÓN 1. EL VECTOR VELOCIDAD EL MOVIMIENTO Y SU DESCRIPCIÓN Se van a tener dos tipos de magnitudes: Magnitudes escalares Magnitudes vectoriales Las magnitudes escalares son aquellas que quedan perfectamente

Más detalles

CAPÍTULO. La derivada. espacio recorrido tiempo empleado

CAPÍTULO. La derivada. espacio recorrido tiempo empleado 1 CAPÍTULO 5 La derivada 5.3 Velocidad instantánea 1 Si un móvil recorre 150 km en 2 oras, su velocidad promedio es v v media def espacio recorrido tiempo empleado 150 km 2 75 km/ : Pero no conocemos la

Más detalles

TEMA 1: Funciones elementales

TEMA 1: Funciones elementales MATEMATICAS TEMA 1 CURSO 014/15 TEMA 1: Funciones elementales 8.1 CONCEPTO DE FUNCIÓN: Una función es una ley que asigna a cada elemento de un conjunto un único elemento de otro. Con esto una función hace

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #16. f : A! B x 7! y = f(x):

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #16. f : A! B x 7! y = f(x): MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #16 Función Sean A y B conjuntos. Una función f de A en B es una regla que asigna a cada elemento x 2 A exactamante un elemento

Más detalles

Capítulo 2. Desigualdades y valor absoluto

Capítulo 2. Desigualdades y valor absoluto Capítulo Desigualdades valor absoluto 1 Desigualdades valor absoluto Valor absoluto El valor absoluto de un número real es su distancia al cero Puesto que un número real puede ser positivo, negativo o

Más detalles

1. Calcula la tasa de variación media de la función y = x 2 +x-3 en los intervalos: a) [- 1,0], b) [0,2], c) [2,3]. Sol: a) 0; b) 3; c) 6

1. Calcula la tasa de variación media de la función y = x 2 +x-3 en los intervalos: a) [- 1,0], b) [0,2], c) [2,3]. Sol: a) 0; b) 3; c) 6 ejerciciosyeamenes.com PROBLEMAS DE DERIVADAS 1. Calcula la tasa de variación media de la función +- en los intervalos: a) [- 1,0], b) [0,], c) [,]. Sol: a) 0; b) ; c) 6. Calcula la tasa de variación media

Más detalles

, es: [ texto 1.4.10]

, es: [ texto 1.4.10] UPR Departamento de Ciencias Matemáticas RUM MATE 171 Primer Examen Parcial 18 de junio de 014 Nombre: # Estudiante: Profesor: Dr. Pedro Vásquez Sección: Instrucciones: Lea cada pregunta minuciosamente.

Más detalles

Funciones y gráficas. 3º de ESO

Funciones y gráficas. 3º de ESO Funciones y gráficas 3º de ESO Funciones Una función es una correspondencia entre dos conjuntos numéricos que asocia a cada valor,, del primer conjunto un único valor, y, del segundo. La variable variable

Más detalles

Guía de Repaso 1: Introducción

Guía de Repaso 1: Introducción Guía de Repaso 1: Introducción 1- La distancia de la Tierra al Sol es casi 104 veces mayor que el diámetro de la Tierra. Al estudiar el movimiento de ésta alrededor del Sol, diría usted que la podemos

Más detalles

21. Círculo y recta Matemáticas II, 2012-II. Por qué el círculo y la recta son tan importantes?

21. Círculo y recta Matemáticas II, 2012-II. Por qué el círculo y la recta son tan importantes? . Círculo recta Matemáticas II, -II. Círculo recta Por qué el círculo la recta son tan importantes? Los dos objetos geométricos más importantes aparte del punto son sin duda la recta el círculo. La recta

Más detalles

1.- EL MOVIMIENTO. Ejercicios

1.- EL MOVIMIENTO. Ejercicios Ejercicios 1.- EL MOVIMIENTO 1.- En la siguiente figura se representa la posición de un móvil en distintos instantes. Recoge en una tabla la posición y el tiempo y determina en cada caso el espacio recorrido

Más detalles

FUNCIONES LINEALES Y AFINES

FUNCIONES LINEALES Y AFINES www.matesronda.net José A. Jiménez Nieto FUNCIONES LINEALES Y AFINES. LA FUNCIÓN LINEAL = m El tren AVE lleva una velocidad media de 40 km/h. La siguiente tabla nos da el espacio que recorre en función

Más detalles

Ecuaciones. 3º de ESO

Ecuaciones. 3º de ESO Ecuaciones 3º de ESO El signo igual El signo igual se utiliza en: Igualdades numéricas: 2 + 3 = 5 Identidades algebraicas: (x + 4) x = x 2 + 4 4x Fórmulas: El área, A,, de un círculo de radio r es: A =

Más detalles

Cinemática en 2D: Movimiento Circular.

Cinemática en 2D: Movimiento Circular. Cinemática en 2D: Movimiento Circular. Movimiento circular uniforme Otro caso particular de movimiento en dos dimensiones es el de una partícula que se mueve describiendo una trayectoria circular, con

Más detalles

1. Aplique el método de inducción matemática para probar las siguientes proposiciones. e) f) es divisible por 6. a) b) c) d) e) f)

1. Aplique el método de inducción matemática para probar las siguientes proposiciones. e) f) es divisible por 6. a) b) c) d) e) f) 1. Aplique el método de inducción matemática para probar las siguientes proposiciones. a) b) c) d) e) f) es divisible por 6. g) 2. Halle la solución de las siguientes desigualdades de primer orden. g)

Más detalles

3.4 Concavidad y el criterio de la segunda derivada

3.4 Concavidad y el criterio de la segunda derivada 90 CAPÍTULO 3 Aplicaciones de la derivada 3.4 Concavidad el criterio de la segunda derivada Determinar intervalos sobre los cuales una función es cóncava o cóncava. Encontrar cualesquiera puntos de infleión

Más detalles

Tema II: Programación Lineal

Tema II: Programación Lineal Tema II: Programación Lineal Contenido: Solución a problemas de P.L. por el método gráfico. Objetivo: Al finalizar la clase los alumnos deben estar en capacidad de: Representar gráficamente la solución

Más detalles

CINEMÁTICA: ESTUDIO DEL MOVIMIENTO. Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos.

CINEMÁTICA: ESTUDIO DEL MOVIMIENTO. Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos. CINEMÁTICA: ESTUDIO DEL MOVIMIENTO Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos. 1. Cuándo un cuerpo está en movimiento? Para hablar de reposo o movimiento

Más detalles

TRABAJO Y ENERGIA: CURVAS DE ENERGÍA POTENCIAL:

TRABAJO Y ENERGIA: CURVAS DE ENERGÍA POTENCIAL: TRABAJO Y ENERGIA: CURVAS DE ENERGÍA POTENCIAL: Si junto con la fuerza de Van der Waals atractiva, que varía proporcionalmente a r 7, dos atómos idénticos de masa M eperimentan una fuerza repulsiva proporcional

Más detalles

MATEMÁTICAS BÁSICAS CIRCUNFERENCIA DEFINICIÓN DE CIRCUNFERENCIA

MATEMÁTICAS BÁSICAS CIRCUNFERENCIA DEFINICIÓN DE CIRCUNFERENCIA MATEMÁTICAS BÁSICAS CIRCUNFERENCIA DEFINICIÓN DE CIRCUNFERENCIA Una circunferencia se define como el lugar geométrico de los puntos que equidistan de un punto fijo en el plano llamado centro. La distancia

Más detalles

Modelo Académico de Calidad para la Competitividad AIND-01 92/98

Modelo Académico de Calidad para la Competitividad AIND-01 92/98 9. Matriz de Valoración ó Rúbrica MATRIZ DE VALORACIÓN O RÚBRICA Siglema: AIND-01 Nombre del Módulo: Nombre del Alumno: PSP evaluador: Grupo: Fecha: Resultado de Aprendizaje: 1.1 Determina la gráfica,

Más detalles

Campo Eléctrico. Fig. 1. Problema número 1.

Campo Eléctrico. Fig. 1. Problema número 1. Campo Eléctrico 1. Cuatro cargas del mismo valor están dispuestas en los vértices de un cuadrado de lado L, tal como se indica en la figura 1. a) Hallar el módulo, dirección y sentido de la fuerza eléctrica

Más detalles

CONCAVIDAD. Supongamos que tenemos la siguiente información, referente a una curva derivable: Cómo la graficaríamos?

CONCAVIDAD. Supongamos que tenemos la siguiente información, referente a una curva derivable: Cómo la graficaríamos? CAPÍTULO 14 CONCAVIDAD Supongamos que tenemos la siguiente información, referente a una curva derivable: Intervalo Signo de f F (-00,3) + Creciente (3,8) - Decreciente (8, + ) + Creciente Cómo la graficaríamos?

Más detalles

EJERCICIOS RESUELTOS DE INECUACIONES. Juan Jesús Pascual. Inecuaciones

EJERCICIOS RESUELTOS DE INECUACIONES. Juan Jesús Pascual. Inecuaciones MATEMÁTICAS EJERCICIOS RESUELTOS DE INECUACIONES Juan Jesús Pascual Inecuaciones Índice ejercicios resueltos A. Inecuaciones lineales con una incógnita B. Inecuaciones de segundo grado con una incógnita

Más detalles

Análisis de los reactivos de la Evaluación de Concepciones Físicas (Efraín Soto Apolinar)

Análisis de los reactivos de la Evaluación de Concepciones Físicas (Efraín Soto Apolinar) Análisis de los reactivos de la Evaluación de Concepciones Físicas (Efraín Soto Apolinar) Reactivo 1: Las figuras adjuntas muestran las gráficas de aceleración en función del tiempo para cinco objetos.

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 25

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 25 MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 5 La Trigonometría es el estudio de la relación entre las medidas de los lados y los ángulos del triángulo. Ángulos En este

Más detalles

8. y = Solución: x 4. 9. y = 3 5x. Solución: y' = 5 3 5x L 3. 10. y = Solución: 4 4 (5x) 3. 11. y = Solución: (x 2 + 1) 2. 12.

8. y = Solución: x 4. 9. y = 3 5x. Solución: y' = 5 3 5x L 3. 10. y = Solución: 4 4 (5x) 3. 11. y = Solución: (x 2 + 1) 2. 12. 7 Cálculo de derivadas. Reglas de derivación. Tabla de derivadas Aplica la teoría Deriva en función de :. y = 8. y = 5 3 5 4. y = ( ) 5 0( ) 4 9. y = 3 5 5 3 5 L 3 3. y = 7 + 3 4. y = e e 5. y = 7 7 +

Más detalles

PENDIENTE MEDIDA DE LA INCLINACIÓN 2.1.2 2.1.4

PENDIENTE MEDIDA DE LA INCLINACIÓN 2.1.2 2.1.4 PENDIENTE MEDIDA DE LA INCLINACIÓN 2.1.2 2.1.4 Los alumnos utilizaron la ecuación = m + b para graficar rectas describir patrones en los cursos anteriores. La Lección 2.1.1 es un repaso. Cuando la ecuación

Más detalles

3Soluciones a los ejercicios y problemas

3Soluciones a los ejercicios y problemas Soluciones a los ejercicios y problemas PÁGINA 0 Pág. P RACTICA Números reales a) Clasifica los siguientes números como racionales o irracionales: ; ;, ) 9 7;,; ; ; π b) Alguno de ellos es entero? c) Ordénalos

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS EJERCICIOS PROPUESTOS 1) En cada ejercicio hallar la ecuación de la circunferencia que cumple: 1) El radio es igual a 6 y las coordenadas de su centro son ( 1, 2). 2) Su centro es el origen de coordenadas

Más detalles

Tema 10 Aplicaciones de la derivada Matemáticas II 2º Bachillerato 1. ( x) 2x x. Hay dos puntos: (1, 2) y (1, 2)

Tema 10 Aplicaciones de la derivada Matemáticas II 2º Bachillerato 1. ( x) 2x x. Hay dos puntos: (1, 2) y (1, 2) Tema 0 Aplicaciones de la derivada Matemáticas II º Bachillerato TEMA 0 APLICACIONES DE LA DERIVADA RECTA TANGENTE Escribe e 0 EJERCICIO : la ecuación de la recta tangente a la curva f en 0. Ordenada del

Más detalles

SISTEMAS DE INECUACIONES LINEALES

SISTEMAS DE INECUACIONES LINEALES SISTEMAS DE INECUACIONES LINEALES I.- Grafique /3 +3 verifique si los siguientes puntos pertenecen o no a la recta: 1) (,) ) (,4) 3. (,) 4) (6,5) 5) (-3,) 6) (6,8) 7) (-6,) 8) (-9,5) Soluciones de Inecuaciones

Más detalles

9. Rectas e hipérbolas

9. Rectas e hipérbolas 08 SOLUCIONARIO 9. Rectas e hipérbolas Representa gráficamente las siguientes ecuaciones. Di cuáles son funciones y clasifícalas: 8. y =. FUNCIONES CONSTANTES LINEALES PIENSA CALCULA y = Halla mentalmente

Más detalles

MOVIMIENTO. El movimiento es el cambio de posición de un objeto respecto a un sistema de referencia u observador.

MOVIMIENTO. El movimiento es el cambio de posición de un objeto respecto a un sistema de referencia u observador. Ciencias Naturales 2º ESO página 1 MOVIMIENTO El movimiento es el cambio de posición de un objeto respecto a un sistema de referencia u observador. Las diferentes posiciones que posee el objeto forman

Más detalles

Ejercicios 1ª EVALUACIÓN. FÍSICA Movimiento Rectilíneo Uniforme (MRU)

Ejercicios 1ª EVALUACIÓN. FÍSICA Movimiento Rectilíneo Uniforme (MRU) Ejercicios 1ª EVALUACIÓN. FÍSICA Movimiento Rectilíneo Uniforme (MRU) 1. Cuál de los siguientes movimientos es más rápido, el del sonido que viaja a 340 m/s o el de un avión comercial que viaja a 1.080

Más detalles

Aplicaciones de la derivada

Aplicaciones de la derivada CAPÍTULO 8 Aplicaciones de la derivada 8. Máimos mínimos locales Si f. 0 / f./ para cada cerca de 0, es decir, en un intervalo abierto que contenga a 0, diremos que f alcanza un máimo local o un máimo

Más detalles

FUNCIONES RACIONALES. HIPÉRBOLAS

FUNCIONES RACIONALES. HIPÉRBOLAS www.matesronda.net José A. Jiménez Nieto FUNCIONES RACIONALES. HIPÉRBOLAS 1. FUNCIÓN DE PROPORCIONALIDAD INVERSA El área de un rectángulo es 18 cm 2. La siguiente tabla nos muestra algunas medidas que

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA C u r s o : Matemática Material N 6 GUÍA TEÓRICO PRÁCTICA Nº UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA Una ecuación de segundo grado es una ecuación de la forma, o que

Más detalles

TRANSFORMACIONES DE f (x) = x 2 9.1.1 9.1.2. Ejemplo 1

TRANSFORMACIONES DE f (x) = x 2 9.1.1 9.1.2. Ejemplo 1 Capítulo 9 TRANSFORMACIONES DE f () = 2 9.1.1 9.1.2 A fin de lograr un buen dominio de la modelación de datos relaciones en situaciones cotidianas, los alumnos deben ser capaces de reconocer transformar

Más detalles

VALOR ABSOLUTO EN LA RECTA NUMÉRICA

VALOR ABSOLUTO EN LA RECTA NUMÉRICA VALOR ABSOLUTO EN LA RECTA NUMÉRICA 1 CONTENIDO 1. Distancia entre dos puntos. 2. Punto medio. 3. Valor Absoluto. 4. Ecuaciones e Inecuaciones con valor Absoluto 2 Concepto de distancia entre dos puntos

Más detalles

Funciones: raíz cuadrada, potencia, exponencial y logaritmo

Funciones: raíz cuadrada, potencia, exponencial y logaritmo Funciones: raíz cuadrada, potencia, exponencial y logaritmo Función raíz cuadrada La función raíz cuadrada de un número, es el número mayor o igual que cero, que elevado al cuadrado se obtiene el primer

Más detalles

CAPÍTULO. Conceptos básicos

CAPÍTULO. Conceptos básicos CAPÍTULO 1 Conceptos básicos 1.3 Soluciones de ecuaciones diferenciales 1.3.1 Soluciones de una ecuación Ejemplo 1.3.1 Resolver la ecuación: D 0. H Resolver esta ecuación significa encontrar todos los

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grado en Química Bloque Funciones de una variable Sección.5: Aplicaciones de la derivada. Máximos y mínimos (absolutos) de una función. Sea f una función definida en un conjunto I que contiene un punto

Más detalles

EJERCICIOS RESUELTOS DE INECUACIONES

EJERCICIOS RESUELTOS DE INECUACIONES EJERCICIOS RESUELTOS DE INECUACIONES 1. Resolver las inecuaciones: a) 3-8 - 7 b) 6-5 > 1-10 a) Para resolver la inecuación, se pasan los términos con al primer miembro y los independientes al segundo quedando

Más detalles

Ejercicios Resueltos de Derivadas y sus aplicaciones:

Ejercicios Resueltos de Derivadas y sus aplicaciones: Ejercicios Resueltos de Derivadas y sus aplicaciones: 1.- Sea la curva paramétrica definida por, con. a) Halle. b) Para qué valor(es) de, la curva tiene recta tangente vertical? 2.- Halle para : a) b)

Más detalles

Ejemplo Traza la gráfica de los puntos: ( 5, 4), (3, 2), ( 2, 0), ( 1, 3), (0, 4) y (5, 1) en el plano cartesiano.

Ejemplo Traza la gráfica de los puntos: ( 5, 4), (3, 2), ( 2, 0), ( 1, 3), (0, 4) y (5, 1) en el plano cartesiano. Plano cartesiano El plano cartesiano se forma con dos rectas perpendiculares, cuyo punto de intersección se denomina origen. La recta horizontal recibe el nombre de eje X o eje de las abscisas y la recta

Más detalles

Veamos sus vectores de posición: que es la ecuación vectorial de la recta:

Veamos sus vectores de posición: que es la ecuación vectorial de la recta: T.5: ECUACIONES DE LA RECTA 5.1 Ecuación vectorial de la recta Una recta queda determinada si se conoce un vector que lleve su dirección (de entre todos los vectores proporcionales), llamado vector director,

Más detalles

Universidad Icesi Departamento de Matemáticas y Estadística

Universidad Icesi Departamento de Matemáticas y Estadística Universidad Icesi Departamento de Matemáticas y Estadística Solución del primer eamen parcial del curso Cálculo de una variable Grupos: Uno y Cinco Período: Inicial del año 00 Prof: Rubén D. Nieto C. PUNTO.

Más detalles

Funciones de varias variables.

Funciones de varias variables. Funciones de varias variables. Definición. Hasta ahora se han estudiado funciones de la forma y = f (x), f :D Estas funciones recibían el nombre de funciones reales de variable real ya que su valor y dependía

Más detalles

V. 2 DISCUSIÓN DE UNA CURVA

V. 2 DISCUSIÓN DE UNA CURVA DISCUSIÓN DE ECUACIONES ALGEBRAICAS UNIDAD V Eisten dos problemas fundamentales en la Geometría Analítica:. Dada una ecuación hallar el lugar geométrico que representa.. Dado un lugar geométrico definido

Más detalles

LA INTEGRAL DEFINIDA. APLICACIONES

LA INTEGRAL DEFINIDA. APLICACIONES LA INTEGRAL DEFINIDA. APLICACIONES Página 6 REFLEXIONA Y RESUELVE Dos trenes Un Talgo y un tren de mercancías salen de la misma estación, por la misma vía y en idéntica dirección, uno tras otro, casi simultáneamente.

Más detalles

TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE

TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE PROBLEMAS RESUELTOS + Dada F() =, escriba la ecuación de la secante a F que une los puntos (, F( )) y 4 (, F()). Eiste un punto c en el intervalo [, ]

Más detalles

TEMA 2: DERIVADA DE UNA FUNCIÓN

TEMA 2: DERIVADA DE UNA FUNCIÓN TEMA : DERIVADA DE UNA FUNCIÓN Tasa de variación Dada una función y = f(x), se define la tasa de variación en el intervalo [a, a +h] como: f(a + h) f(a) f(a+h) f(a) y se define la tasa de variación media

Más detalles

F2 Bach. Movimiento armónico simple

F2 Bach. Movimiento armónico simple F Bach Movimiento armónico simple 1. Movimientos periódicos. Movimientos vibratorios 3. Movimiento armónico simple (MAS) 4. Cinemática del MAS 5. Dinámica del MAS 6. Energía de un oscilador armónico 7.

Más detalles

Tema 8. Geometría de la Circunferencia

Tema 8. Geometría de la Circunferencia Tema 8. Geometría de la Circunferencia 1. Definición la circunferencia. Ecuación de la circunferencia 1.1 Ecuación de la circunferencia centrada en el origen 1. Ecuación de la circunferencia con centro

Más detalles

5x + 4y 20 = 0! 5 ( x) + 4 ( y) 20 = 0! 5x 4y 20 = 0. al origen O. En resumen, la ecuación 5x + 4y 20 = 0 no tiene ninguna simetría.

5x + 4y 20 = 0! 5 ( x) + 4 ( y) 20 = 0! 5x 4y 20 = 0. al origen O. En resumen, la ecuación 5x + 4y 20 = 0 no tiene ninguna simetría. Geometría Analítica; C. H. Lehmann. Ejercicio, grupo, capítulo II, página 0.. Discute la ecuación + 0 = 0, estudiando las intersecciones, las simetrías la etensión. Después traza la grá ca correspondiente.

Más detalles

1.- Una persona corre 500m en 80 seg. Cuál es su rapidez? Exprésela en m/seg. y km./h.

1.- Una persona corre 500m en 80 seg. Cuál es su rapidez? Exprésela en m/seg. y km./h. 1.- Una persona corre 500m en 80 seg. Cuál es su rapidez? Exprésela en m/seg. y km./h. 2.- Un avión vuela con rapidez constante de 500 km./h. Qué distancia recorre en 30 min.? (250 km.) 3.- La rapidez

Más detalles

FÍSICA 1-2 TEMA 1 Resumen teórico. Cinemática

FÍSICA 1-2 TEMA 1 Resumen teórico. Cinemática Cinemática INTRODUCCIÓN La cinemática es la ciencia que estudia el movimiento de los cuerpos. Sistemas de referencia y móviles Desplazamiento, rapidez, velocidad y aceleración Pero un movimiento (un cambio

Más detalles

Las desigualdades involucran los símbolos: < menor que, >,

Las desigualdades involucran los símbolos: < menor que, >, . Noción de intervalo en la recta real Un intervalo es un conjunto de números reales que satisfacen una desigualdad, por lo que un intervalo puede ser cerrado, abierto o semiabierto, lo podemos representar

Más detalles

INSTITUTO SUPERIOR DE COMERCIO EDUARDO FREI MONTALVA. GUIA DE FISICA N 3. NOMBRE CURSO: Segundo FECHA: 27 DE JUNIO AL 8 DE JULIO

INSTITUTO SUPERIOR DE COMERCIO EDUARDO FREI MONTALVA. GUIA DE FISICA N 3. NOMBRE CURSO: Segundo FECHA: 27 DE JUNIO AL 8 DE JULIO INSTITUTO SUPERIOR DE COMERCIO EDUARDO FREI MONTALVA. GUIA DE FISICA N 3 Tema: Gráficas del Movimiento Uniformemente Acelerado (MRUA) Objetivos de Aprendizaje: - Interpretar gráficos del MRUA -Calcular

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN DESIGUALDADES

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN DESIGUALDADES MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN DESIGUALDADES Al inicio del Capítulo, estudiamos las relaciones de orden en los número reales y el signi cado de expresiones como a

Más detalles

(Apuntes en revisión para orientar el aprendizaje) Capítulo IV Variación de funciones. Extremos

(Apuntes en revisión para orientar el aprendizaje) Capítulo IV Variación de funciones. Extremos (Apuntes en revisión para orientar el aprendizaje) Capítulo IV Variación de unciones. Etremos INTRODUCCIÓN En múltiples problemas de ingeniería se requiere optimizar una o varias de las variables que intervienen

Más detalles

5. Al simplificar. expresión se obtiene:

5. Al simplificar. expresión se obtiene: ARITMÉTICA. [ ( 7 ) 9 ( 7 )] es igual a : 5. El resultado de simplificar la expresión. 5 5 5 7 7, 6 + es igual a: 5 9 7 6 5 5. El valor de 75 6 5 5 ( 5 )( 65 ) log es igual a: 5 5 5. Al simplificar Mayo

Más detalles

Ecuación de la Recta

Ecuación de la Recta PreUnAB Clase # 10 Agosto 2014 Forma La ecuación de la recta tiene la forma: y = mx + n con m y n constantes reales, m 0 Elementos de la ecuación m se denomina pendiente de la recta. n se denomina intercepto

Más detalles

Fecha de realización:... Fecha de entrega:... Comisión:... Apellidos Nombres:...

Fecha de realización:... Fecha de entrega:... Comisión:... Apellidos Nombres:... ASIGNATURA: FÍSICA I TRABAJO PRÁCTICO Nº 1: GRÁFICOS Y ESCALAS Fecha de realización:... Fecha de entrega:... Comisión:... Apellidos Nombres:... y......... 1. Objetivo del trabajo: Construcción de gráficos,

Más detalles

MOVIMIENTO RECTILINEO VARIADO O ACELERADO (MRV - A)

MOVIMIENTO RECTILINEO VARIADO O ACELERADO (MRV - A) MOVIMIENTO RECTILINEO VARIADO O ACELERADO (MRV - A) Cinemática La cinemática es la parte de la mecánica clásica que estudia las leyes del movimiento de los cuerpos sin tener en cuenta las causas que lo

Más detalles

Procedimiento para determinar las asíntotas verticales de una función

Procedimiento para determinar las asíntotas verticales de una función DETERMINACIÓN DE ASÍNTOTAS EN UNA FUNCIÓN Las asíntotas son rectas a las cuales la función se va aproimando indefinidamente, cuando por lo menos una de las variables ( o y) tienden al infinito. Una definición

Más detalles

Gráficas de las funciones racionales

Gráficas de las funciones racionales Gráficas de las funciones racionales Ahora vamos a estudiar de una manera geométrica las ideas de comportamiento de los valores que toma la función cuando los valores de crecen mucho. Es importante que

Más detalles

Sucesiones (páginas 511 515)

Sucesiones (páginas 511 515) A NMRE FECHA PERÍD Sucesiones (páginas 5 55) Una sucesión es una lista de números en un cierto orden. Cada número se llama término de la sucesión. En una sucesión aritmética, la diferencia entre cualquier

Más detalles

Unidad III Movimiento de los Cuerpos (Cinemática) Ejercicios Matemáticos

Unidad III Movimiento de los Cuerpos (Cinemática) Ejercicios Matemáticos Unidad III Movimiento de los Cuerpos (Cinemática) Ejercicios Matemáticos Ing. Laura Istabhay Ensástiga Alfaro. 1 Ejercicios de movimiento Horizontal. 1. Un automóvil viaja inicialmente a 20 m/s y está

Más detalles

TEMA 5.- DERIVADAS. Tasa de variación. Consideremos una función y = f(x) y consideremos dos puntos próximos

TEMA 5.- DERIVADAS. Tasa de variación. Consideremos una función y = f(x) y consideremos dos puntos próximos TEMA 5.- DERIVADAS Tasa de variación Consideremos una función y = f(x) y consideremos dos puntos próximos sobre el eje de abscisas "a" y "a+h", siendo "h" un número real que corresponde al incremento de

Más detalles

SESIÓN 13 DERIVACIÓN DE FUNCIONES EXPONENCIALES Y LOGARÍTMICAS (2ª PARTE)

SESIÓN 13 DERIVACIÓN DE FUNCIONES EXPONENCIALES Y LOGARÍTMICAS (2ª PARTE) SESIÓN 13 DERIVACIÓN DE FUNCIONES EXPONENCIALES Y LOGARÍTMICAS (2ª PARTE) I. CONTENIDOS: 1. Ejercicios resueltos aplicando exponentes y logaritmos (2ª. Parte) 2. Derivación de funciones exponenciales y

Más detalles

x + x 2 +1 = 1 1 = 0 = lím

x + x 2 +1 = 1 1 = 0 = lím UNIDAD Asíntota horizontal: 8 +@ + + = y = es asíntota horizontal hacia +@ (y > ). + + + + = = = 0 8 @ 8 +@ y = 0 es asíntota horizontal hacia @ (y < 0). CUESTIONES TEÓRICAS 30 Qué podemos decir del grado

Más detalles

UPR Departamento de Ciencias Matemáticas RUM MATE 3171 Primer Examen Parcial 3 de marzo de 2011

UPR Departamento de Ciencias Matemáticas RUM MATE 3171 Primer Examen Parcial 3 de marzo de 2011 UPR Deartamento de Ciencias Matemáticas RUM MATE 7 Primer Examen Parcial de marzo de 0 Nombre: # Estudiante: Profesor: Sección: Instrucciones: Lea cada regunta minuciosamente. No se ermite el uso de libros,

Más detalles

MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS: GEOMETRÍA ANALÍTICA. 3. Determinar analíticamente cuando dos rectas son paralelas o perpendiculares.

MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS: GEOMETRÍA ANALÍTICA. 3. Determinar analíticamente cuando dos rectas son paralelas o perpendiculares. ESTUDIO ANALÍTICO DE LA LÍNEA RECTA Y APLICACIONES SEMESTRE II VERSIÓN 03 FECHA: Septiembre 29 de 2011 MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS: GEOMETRÍA ANALÍTICA LOGROS: 1. Hallar la dirección, la

Más detalles

PENDIENTES 2º ESO. Tercer examen DEPARTAMENTO DE MATEMÁTICAS. Preparación del tercer examen de recuperación de MATEMÁTICAS DE 2º ESO Curso 2013-2014

PENDIENTES 2º ESO. Tercer examen DEPARTAMENTO DE MATEMÁTICAS. Preparación del tercer examen de recuperación de MATEMÁTICAS DE 2º ESO Curso 2013-2014 014 015 Preparación del tercer examen de recuperación de MATEMÁTICAS DE º ESO PENDIENTES º ESO Tercer examen DEPARTAMENTO DE MATEMÁTICAS 1.- En un triángulo rectángulo, los catetos miden 5 y 1cm, respectivamente.

Más detalles

EJERCICIOS RESUELTOS DE ECUACIONES

EJERCICIOS RESUELTOS DE ECUACIONES Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones EJERCICIOS RESUELTOS DE ECUACIONES 1. Determinar si cada una de las siguientes igualdades es una ecuación o una identidad:

Más detalles

Interpretación geométrica de la derivada

Interpretación geométrica de la derivada Interpretación geométrica de la derivada El matemático francés ierre de Fermat (60 665) al estudiar máimos mínimos de ciertas funciones observó que en aquellos puntos en los que la curva presenta un máimo

Más detalles

VII. ECUACIÓN GENERAL DE SEGUNDO GRADO

VII. ECUACIÓN GENERAL DE SEGUNDO GRADO VII. ECUACIÓN GENERAL DE SEGUNDO GRADO 7.. SECCIONES CÓNICAS Cuando un plano corta a un cono circular recto de dos mantos, la sección que resulta de dicho corte determina ciertas curvas llamadas CÓNICAS.

Más detalles

TEMA 5 FUNCIONES ELEMENTALES II

TEMA 5 FUNCIONES ELEMENTALES II Tema Funciones elementales Ejercicios resueltos Matemáticas B º ESO TEMA FUNCIONES ELEMENTALES II Rectas EJERCICIO. Halla la pendiente, la ordenada en el origen y los puntos de corte con los ejes de coordenadas

Más detalles

DERIVADAS. TÉCNICAS DE DERIVACIÓN

DERIVADAS. TÉCNICAS DE DERIVACIÓN DERIVADAS. TÉCNICAS DE DERIVACIÓN Página 5 REFLEXIONA Y RESUELVE Tangentes a una curva y f () 5 5 9 4 Halla, mirando la gráfica y las rectas trazadas, f'(), f'(9) y f'(4). f'() 0; f'(9) ; f'(4) 4 Di otros

Más detalles

Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática (0081714)

Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática (0081714) Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática (0081714) UNIDAD N 1 (FUNCIONES) Profesora: Yulimar Matute Octubre 2011 Función Constante: Se

Más detalles

Clase 9 Sistemas de ecuaciones no lineales

Clase 9 Sistemas de ecuaciones no lineales Clase 9 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo, 2016 con dos incógnitas Un sistema de dos ecuaciones en el que al menos una ecuación es no lineal, se llama

Más detalles

1. La siguiente grafica representa. Determine su regla de correspondencia A) B) Calcule C) D) A) 2 B) 4 C) 6 D) 8 E) 10

1. La siguiente grafica representa. Determine su regla de correspondencia A) B) Calcule C) D) A) 2 B) 4 C) 6 D) 8 E) 10 1. La siguiente grafica representa Determine su regla de correspondencia Calcule 2 4 6 8 10 2. Después de graficar la función Indique el rango de la función 3. En el grafico adjunto, halle 5. Determine

Más detalles

Producto cartesiano. X Y = {(x, y) : x X, y Y }. Ejemplo En el tablero de ajedrez, X = números del 1-8, Y = letras de A-H.

Producto cartesiano. X Y = {(x, y) : x X, y Y }. Ejemplo En el tablero de ajedrez, X = números del 1-8, Y = letras de A-H. Producto cartesiano Motivación: Has oido hablar sobre gente que juega ajedrez sin tener que mirar nunca el tablero?. Esto es posible, y se debe a una herramienta llamada coordenadas de un punto. En un

Más detalles
Sitemap