SÓLO ENUNCIADOS. FUNCIONES LITERALES EN CONTEXTOS COTIDIANOS. 1.- LA AGRUPACIÓN PACIFISTA


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "SÓLO ENUNCIADOS. FUNCIONES LITERALES EN CONTEXTOS COTIDIANOS. 1.- LA AGRUPACIÓN PACIFISTA"

Transcripción

1 DP. - AS Matemáticas ISSN: X SÓLO ENUNCIADOS. FUNCIONES LITERALES EN CONTEXTOS COTIDIANOS. 1.- LA AGRUPACIÓN PACIFISTA 1968 es el año de la fundación de una agrupación pacifista. Después de un estudio del número de sus miembros asociados [N(x)] con respecto a los años transcurridos x, se aprecia que se ajusta a la fórmula: N(x) = 50 ( 2x 3 15x x + 2) (b) Qué significado tiene el punto (0.6, 888.4)? (c) Para cuántos años tendría validez la función que determina la evolución del número de miembros; así pues, cuál se podría considerar el dominio? (d) * Cuántos fueron los socios fundadores? (e) Representa la función sólo en su dominio. (f)* En qué año se alcanza el máximo número de socios? (g)* En qué año se alcanza el mínimo número de socios? (h)* Cuál será el mayor número de socios que tendrá la agrupación? (i)* Cuál será el menor número de socios que tendrá la agrupación? (j) Cuántos socios tendrá al cabo de 1 año y seis meses? (k) Y al cabo de un año y 8 meses? (l) Cuánto tardará en alcanzar los 651 socios? (m) Comenta razonadamente si el número de socios está aumentando o disminuyendo al cabo de 3 meses. (n) Cuánto tiempo estimas que tardará en desaparecer dicha agrupación? (ñ) Si la agrupación pacifista llega a desaparecer, según el modelo funcional sugerido, volverá a resurgir? (o) Si la cuota de cada miembro es de 9 euros, cuántos euros se recolectarán en el séptimo mes? 2.- LANZANDO UNA BOLA DE ACERO Una bola de acero es lanzada verticalmente hacia arriba desde lo alto de un edificio de altura h metros con dependencia funcional, al cabo de x segundos, que viene dado por la fórmula: h = x 16 x 2 (b) Qué significado tiene el punto (0.8, ) en la gráfica? (c) * Qué altura tiene el edificio? (d) * En qué instante la bola alcanza su máxima altura? (e) Cuál es la máxima altura que alcanza la bola desde el suelo? (f) Cuánto subió la bola hasta que alcanza la máxima altura? (g) Cuánto tarda la bola en caer al suelo? (h) Cuánto tiempo tarda la bola en estar de nuevo a la misma altura desde la que fue arrojada? (i) A qué altura está la bola a los 4 segundos y medio? (j) A qué altura está la bola a los 10 segundos? (k) Al cabo de 2 segundos la bola... está subiendo o bajando? Explícalo razonadamente, aplicando conceptos teóricos. (l) * Cuál es el dominio de la función h = x 16x 2? (m) Si lo hubieses hecho experimentalmente y fueses anotando la altura con respecto al tiempo, cuál sería verdaderamente la gráfica que obtendrías entre x = 2 y x = 15? Dibújala. (n) Cuál sería el dominio de esa función h(x) realizada experimentalmente entre x = 2 y x = 15? (ñ) A qué velocidad va la pelota cuando alcanza la máxima altura y va a empezar a caer? (o) Halla la velocidad media de la bola en el intervalo de tiempo comprendido entre t = 0 y t = 4. (p) ** Cómo podrías representar la velocidad que lleva la pelota en cada momento? 1

2 Abel Martín 3.- CULTIVANDO HORTALIZAS La producción total de cierta hortaliza en un invernadero, Q(x) en Kg, depende de la temperatura, x en ºC, según la expresión: Q(x) = (x + 1) 2 (32 x) (b) Qué significado tiene el punto (5, 972) de la gráfica? (c)* Calcula, razonadamente, cuál es la temperatura óptima a mantener en el invernadero. (d)* Qué producción de hortaliza se obtendría en ese momento? (e) Qué temperatura se puede considerar mortal para esa variedad de hortaliza? (f) Se mueren las plantas a partir de 0 ºC, al aplicarles más frío? (g) Cuándo tiene sentido esta función? Cuál es su dominio? (h) Comenta, razonadamente, si a 12 ºC la producción de hortalizas es creciente o decreciente. (i) En qué momentos la producción es creciente? (j) En qué intervalo la producción es decreciente? (k) Si le aplico frío, a partir de 0 ºC hay algún momento en el que no existe producción? (l) Cuándo hay una producción de kilogramos? (m) Qué producción hay a 20 ºC? Y a 0 ºC? (n) En qué momento se producirán 120 kilogramos de hortaliza? (ñ) y 4352 kilogramos? 4.- EL PLAN DE INVERSIÓN Cierta entidad financiera lanza al mercado un plan de inversión cuya rentabilidad mensual [R(x) en miles de euros] viene dada en función de la cantidad que se invierta, x en miles de euros, por medio de la expresión siguiente: R(x) = 0'001 x 2 + 0'5 x + 2' 5 (b) Qué significado tiene el punto (8, 6.436) de la gráfica? (c)* Deducir razonadamente qué cantidad de dinero le conviene invertir a un cliente en dicho plan. (d)* Qué rentabilidad obtendría en ese momento? (e) Existe algún tipo de regalo si suscribes este tipo plan de inversión? (f) En qué momento comienza a generar pérdidas la inversión? (g) Cuándo tiene sentido esta función? Cuál es su dominio? (h) Cuánto dinero tengo que invertir para tener unas pérdidas mensuales de 1000 euros? (i) Cuándo son crecientes las ganancias? (j) Cuánto tendré que invertir para obtener unas ganancias de de euros? (k) Cuánto tendré que invertir para tener unas ganancias de de euros? (l) Y para obtener unas ganancias superiores a euros? (m) Cuándo obtengo una rentabilidad de euros. (n) Cuánto se prevé que ganaré un mes si invierto euros? (ñ) Y cuánto se prevé que ganaré si invierto euros? 5.- LA GRANJA DE FAISANES Una granja se dedica a la cría de faisanes. El beneficio que puede obtener semanalmente está relacionado con el número de aves criadas (representado por la variable x) a través de la siguiente expresión: B(x) = 6 000x 0.2x (b) Qué significado tiene el punto (23, ) de la gráfica? (c) Qué beneficios se obtendrán cuando se críen 48 faisanes? Y cuándo se críen 190? 2 FUNCIONES LITERALES EN CONTEXTOS COTIDIANOS

3 DP. - AS Matemáticas ISSN: X (d) Si obtenemos un beneficio de 1000 Cuántos faisanes se habrán criado? (e) Para obtener beneficios superiores a las 1000 Cuántos faisanes hay que criar? (f) Cuánto le supone la inversión (sueldos, luz, teléfono,...) en la granja, semanalmente, sin tener en cuenta las aves que cría. (g) Si va aumentando el número de faisanes criados, cuando críe 49, los beneficios obtenidos estarán creciendo o disminuyendo? (h) Y si va aumentando el número de faisanes criados, cuando críe 154, los beneficios obtenidos estarán creciendo o disminuyendo? (i) Cuántos faisanes deben criarse por semana para obtener el mayor beneficio posible? (j) Cuál será el beneficio obtenido en ese momento? (k) Cuándo tendrá pérdidas? (l) En qué intervalo de número de faisanes el beneficio es creciente? (m) En qué intervalo de número de faisanes el beneficio es decreciente? (n) Cuál es el dominio de la función? 6.- LANZAMIENTO DE PIEDRA Se ha lanzado hacia arriba, verticalmente, una piedra desde un pequeño montículo. La altura e, expresada en metros sobre el nivel del mar, alcanzada al cabo de t segundos, viene dado por la fórmula: e = t 2 t 2 (b) Qué significado tiene el punto (1.1, 51.58) en la gráfica? (c) * Halla la altura de la colina. (d) * En qué instante la piedra alcanza su máxima altura? Cuál es la máxima altura, con respecto al nivel del mar, que alcanza la piedra? (e) Cuánto subió el pedrusco hasta que alcanza la máxima altura? (f) Cuánto tarda el pedernal en caer al suelo? (g) Cuánto tiempo tarda el guijarro en estar de nuevo a la misma altura desde la que fue arrojada? (h) A qué altura, sobre el nivel del mar, está la piedra a los 2 segundos y medio? Y a los 11 segundos? (i) Al cabo de 1.9 segundos la piedra... está subiendo o bajando? Explícalo razonadamente, aplicando conceptos teóricos. (j) * Cuál es el dominio de la función e = t 2 t 2? (k) Si lo hubieses hecho experimentalmente y fueses anotando la altura con respecto al tiempo, cuál sería verdaderamente la gráfica que obtendrías entre x = 2 y x = 18? Dibújala. (l) Cuál sería el dominio de esa función h(x) realizada experimentalmente entre x = 2 y x = 18? (m) A qué velocidad va la roca cuando alcanza la máxima altura y va a empezar a caer? (n) Halla la velocidad media de la piedra en el intervalo de tiempo comprendido entre t = 0 y t = 5. (ñ) ** Cómo podrías representar la velocidad que lleva la pelota en cada momento? (o) En algún momento la velocidad de la piedra ha sido de 15 m/sg? Si es así, a qué altura sucedió? 7. BENEFICIOS EN LA FÁBRICA 1 La función f (x) = ( x x 1600) representa el beneficio, expresado en miles de euros, que 90 obtiene una empresa por la fabricación de x unidades de un determinado producto. (b) Qué significado tiene el punto (27, ) de la gráfica? (c) Cuánto cuesta poner en marcha la empresa? (d) Cuál es el mayor beneficio posible? (e) Cuántas unidades hay que fabricar para obtener ese máximo beneficio? (f) Cuándo se obtiene un beneficio de euros? 3

4 Abel Martín (g) Cuántas unidades hay que fabricar para que no se produzcan pérdidas? (h) Qué beneficio se produce cuando se fabrican 72 unidades? (i) Si obtenemos un beneficio de euros Cuántos unidades se habrán fabricado? (j) Si va aumentando el número de unidades fabricadas, siempre aumentarán los beneficios? (k) Cuándo tendrá pérdidas? (l) En qué intervalo los beneficios son crecientes? (m) En qué intervalo de número de unidades los beneficios son decrecientes? (n) Cuál es el dominio de la función? (ñ) Cuando se fabrican 48 unidades, el beneficio... es creciente o decreciente? 8. REMODELANDO EL CLUB Un club deportivo cuenta con un número de socios que viene dado (en miles de personas) por la función: S(x) = 2x 3 15x x + 26 donde x indica el número de años desde la última remodelación. (a) Dibuja la gráfica de la función, señalando en los ejes lo que indica cada uno de ellos y colocando el valor (b) Qué significado tiene el punto (2.4, ) de la gráfica? (c) * Cuántos socios tenía el club en la última remodelación? (d) Para cuántos años tendría validez la función que determina la evolución del número de miembros; así pues, cuál se podría considerar el dominio? (e) Representa la función sólo en su dominio. (f) Hállese el año en el que el club ha tenido el mayor número de socios? (g)* En qué año se alcanza el mínimo número de socios después de la última remodelación señalada? (h)* Cuál será el menor número de socios que tendrá el club? (i) Cuántos socios tendrá al cabo de 3 años después de la última remodelación? (j) Y al cabo de 2 años y 8 meses? (k) El cuarto año se remodeló de nuevo. Indíquese razonadamente si esta remodelación tuvo éxito o no. (l) Cuánto tardará en alcanzar los socios? (m) Cuánto tiempo estimas que tardará en desaparecer dicha asociación? (ñ) Si la cuota de cada miembro es de euros al mes, cuántos euros se ingresarán a comienzos del 5º año? Y cuántas pesetas? 9. LOS INICIOS DEL SIDA Algunos expertos estimaron, a comienzos de los años noventa, que el SIDA crecía a razón del 20% anual. Si suponemos que en esa fecha, en una determinada ciudad, la fórmula de crecimiento venía dada por se pide: E(t) = 1000 ( ) t (a) Dibuja la gráfica de la función, señalando en los ejes lo que indica cada uno de ellos y colocando el valor (b) Qué significado tiene el punto (10.1, ) de la gráfica? (c) * Cuántos enfermos de SIDA había a comienzos de los años noventa en esa ciudad? (d) En que año se alcanzará el mayor número de enfermos en esa ciudad? Justifica la respuesta. (e) Cuántos enfermos habría a comienzos de 1993? (f) Y en el año 2000? (g) Cuánto tardará en duplicarse el número de afectados? (h) Y en cuadruplicarse? Y en quintuplicarse? (i) Cuál es el dominio de la función? 4 FUNCIONES LITERALES EN CONTEXTOS COTIDIANOS

5 DP. - AS Matemáticas ISSN: X 10. LOS COSTES DE FABRICACIÓN El coste total de fabricación [C(q) expresado en dólares] de q unidades de cierto artículo es: C(q) = 3q 2 + 5q + 75 C ( q) Se define coste medio por unidad como el cociente q Se pide: (a) * Dibuja la gráfica de la nueva función coste medio por unidad, señalando en los ejes lo que indica cada uno de ellos y colocando el valor (b) Cuándo tiene sentido esta función? Cuál es su dominio? (c) Cuantas más unidades de dicho artículo se hagan, crees que disminuirá el precio unitario? (d)* En qué nivel de producción será menor el coste medio por unidad? (e) Cuántas unidades habrá que hacer para ponerlo a un coste unitario de 6 dólares? (f) Si se ha puesto a un precio de 4 dólares cuántas unidades se habrán fabricado? (g) Si he fabricado 2 artículos Cuál será el precio de cada uno? (h)* Tiene la función coste medio por unidad puntos de inflexión? Razona la respuesta. (i) Cuánto cuesta poner en marcha la fabricación de unidades? (j) Este problema tiene sentido en la vida real. (k) * Dibuja la gráfica de la función coste TOTAL de fabricación, señalando en los ejes lo que indica cada uno de ellos y colocando el valor (l) Cuánto costará hacer 100 unidades? (m) Por dólares, cuántas unidades se podrán hacer? 1.- LA AGRUPACIÓN PACIFISTA LANZANDO UNA BOLA DE ACERO 3.- CULTIVANDO HORTALIZAS EL PLAN DE INVERSIÓN 5.- LA GRANJA DE FAISANES

6 Abel Martín 6.- LANZAMIENTO DE PIEDRA BENEFICIOS EN LA FÁBRICA 8. REMODELANDO EL CLUB 9. LOS INICIOS DEL SIDA 10. LOS COSTES DE FABRICACIÓN 6 FUNCIONES LITERALES EN CONTEXTOS COTIDIANOS

. Matemáticas aplicadas CCSS. Ejercicios modelo Selectividad 2000-2011

. Matemáticas aplicadas CCSS. Ejercicios modelo Selectividad 2000-2011 1. CÁLCULO DE DERIVADAS Ejercicio 1. (001) Calcule las funciones derivadas de las siguientes: Lx a) (1 punto) f ( x) = (Lx indica logaritmo neperiano de x) x 3 b) (1 punto) g( x) = (1 x ) cos x 3 1 c)

Más detalles

EJERCICIOS DE CONTINUIDAD Y APLICACIONES DE LA DERIVADA

EJERCICIOS DE CONTINUIDAD Y APLICACIONES DE LA DERIVADA EJERCICIOS DE CONTINUIDAD Y APLICACIONES DE LA DERIVADA 1º) Estudia la continuidad de la siguiente función: x+3 si x < 2 fx = x +1 si x 2 La función está definida para todos los reales: D(f)=R Tanto a

Más detalles

2º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II FICHA TEMA 6.- FUNCIONES. LÍMITES Y CONTINUIDAD PROFESOR: RAFAEL NÚÑEZ

2º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II FICHA TEMA 6.- FUNCIONES. LÍMITES Y CONTINUIDAD PROFESOR: RAFAEL NÚÑEZ º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II FICHA TEMA.- FUNCIONES. LÍMITES CONTINUIDAD PROFESOR: RAFAEL NÚÑEZ -----------------------------------------------------------------------------------------------------------------------------------------------------------------.-

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 05 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,

Más detalles

EJERCICIOS PAU MAT II CC SOC. ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com.

EJERCICIOS PAU MAT II CC SOC. ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com. FUNCIONES 1- a) Dada la función:, Definida para 0, 0, encontrar el punto (x,y) que maximiza f sujeto a la restricción x+y=36. b) Calcular: Aragón 2014 Opción A Junio 2- Dada la función: Calcular: a) Dominio

Más detalles

2. Para cada una de las gráficas, estudia sus principales características y calcula los límites que se indican: x 2

2. Para cada una de las gráficas, estudia sus principales características y calcula los límites que se indican: x 2 CAPÍTULO 9. LÍMITES Y CONTINUIDAD DE FUNCIONES 161 9.7. EJERCICIOS 1. En la oficina de correos, están expuestas las tarifas del servicio de cartas, que son: * Cartas de hasta 20 gr. de peso, 0 25 euros.

Más detalles

DP. - AS Matemáticas ISSN: X

DP. - AS Matemáticas ISSN: X DP. - AS - 5119 007 Matemáticas ISSN: 1988-379X 003 APLIICACIIÓN DE DERIIVADAS:: PROBLEMAS DE OPTIIMIIZACIIÓN CON 1 VARIIABLE.. Un vendedor de enciclopedias recibe, como sueldo mensual, una cantidad fija

Más detalles

FUNCIONES TRIGONOMÉTRICAS, EXPONENCIALES Y LOGARÍTMICAS

FUNCIONES TRIGONOMÉTRICAS, EXPONENCIALES Y LOGARÍTMICAS FUNCIONES TRIGONOMÉTRICAS, EPONENCIALES LOGARÍTMICAS Página 9 REFLEIONA RESUELVE A vueltas con la noria Modificando la escala, representa la función: : tiempo transcurrido y: distancia al suelo correspondiente

Más detalles

5. [2013] [EXT-A] En una empresa de montajes el número de montajes diarios realizados por un trabajador depende de los días

5. [2013] [EXT-A] En una empresa de montajes el número de montajes diarios realizados por un trabajador depende de los días . [204] [ET-A] Una empresa ha realizado un estudio sobre los beneficios, en miles de euros, que ha obtenido en los últimos 0 años. La función a la que se ajustan dichos beneficios viene dada por B(t) =

Más detalles

INECUACIONES: Ejercicio 1.- Resuelve las siguientes inecuaciones lineales con una incógnita:

INECUACIONES: Ejercicio 1.- Resuelve las siguientes inecuaciones lineales con una incógnita: RELACIÓN DE EJERCICIOS TEMA 4.- Inecuaciones 1º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I INECUACIONES: Ejercicio 1.- Resuelve las siguientes inecuaciones lineales con una incógnita:

Más detalles

I.E.S. HAYGÓN CURSO 2011/20121 NOMBRE Y APELLIDOS FECHA TEMA 7: FUNCIONES

I.E.S. HAYGÓN CURSO 2011/20121 NOMBRE Y APELLIDOS FECHA TEMA 7: FUNCIONES NOMBRE Y APELLIDOS FECHA TEMA 7: FUNCIONES 1. La siguiente gráfica representa una excursión en autobús de un grupo de estudiantes, reflejando el tiempo (en horas) y la distancia al instituto (en kilómetros):

Más detalles

FUNCIONES CUADRÁTICAS. PARÁBOLAS

FUNCIONES CUADRÁTICAS. PARÁBOLAS FUNCIONES CUADRÁTICAS. PARÁBOLAS 1. FUNCIONES CUADRÁTICAS Representemos, en función de la longitud de la base (x), el área (y) de todos los rectángulos de perímetro 1 metros. De ellos, cuáles son las medidas

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 010 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

Máximo o mínimo de una función. Solución: El mínimo de una función se da en los puntos que anulan su derivada y tiene derivada segunda positiva.

Máximo o mínimo de una función. Solución: El mínimo de una función se da en los puntos que anulan su derivada y tiene derivada segunda positiva. Análisis: Máimos, mínimos, optimización 1 Máimo o mínimo de una función Observación: La mayoría de estos ejercicios se han propuesto en las pruebas de Selectividad, en los distintos distritos universitarios

Más detalles

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B 1. Queremos invertir una cantidad de dinero en dos tipos

Más detalles

Ejercicios Resueltos de Derivadas y sus aplicaciones:

Ejercicios Resueltos de Derivadas y sus aplicaciones: Ejercicios Resueltos de Derivadas y sus aplicaciones: 1.- Sea la curva paramétrica definida por, con. a) Halle. b) Para qué valor(es) de, la curva tiene recta tangente vertical? 2.- Halle para : a) b)

Más detalles

ESTUDIO LOCAL DE UNA FUNCIÓN

ESTUDIO LOCAL DE UNA FUNCIÓN DP. - AS - 5119 007 Matemáticas ISSN: 1988-79X ESTUDIO LOCAL DE UNA FUNCIÓN Dada la función y - 9 + 1 -, calcula: (a) Dominio de la función. (b) Intervalos de crecimiento y decrecimiento. 00 (c) Puntos

Más detalles

Cuaderno de Actividades 4º ESO

Cuaderno de Actividades 4º ESO Cuaderno de Actividades 4º ESO Relaciones funcionales. Estudio gráfico y algebraico de funciones 1. Interpretación de gráficas 1. Un médico dispone de 1hora diaria para consulta. El tiempo que podría,

Más detalles

Matemática I - Problemas de Máximos y Mínimos

Matemática I - Problemas de Máximos y Mínimos Conceptos previos de la materia a considerar: Concepto de Función. Dominio, codominio, imagen. Formas de expresar una función: mediante tablas, mediante gráficas y analíticamente. Funciones crecientes

Más detalles

UMBRAL DE RENTABILIDAD

UMBRAL DE RENTABILIDAD Enunciado UMBRAL DE RENTABILIDAD Problema 3 La empresa Mochilay, S.A. se dedica a la fabricación de mochilas escolares. Sus costes fijos son de 100.000, los costes variables unitarios ascienden a 10, y

Más detalles

ANÁLISIS. d) No, se podrían haber considerado infinitas funciones diferenciadas en una constante.

ANÁLISIS. d) No, se podrían haber considerado infinitas funciones diferenciadas en una constante. Pruebas de Acceso a la Universidad de Zaragoza. ANÁLISIS Junio 99. Sea f: una función cuya primera derivada es f () =. Se pide: a) Determinar los intervalos de crecimiento y decrecimiento, de concavidad

Más detalles

Ejercicios resueltos de tiro oblicuo

Ejercicios resueltos de tiro oblicuo Ejercicios resueltos de tiro oblicuo 1) Un arquero dispara una flecha cuya velocidad de salida es de 100m/s y forma un ángulo de 30º con la horizontal. Calcula: a) El tiempo que la flecha está en el aire.

Más detalles

EJERCICIOS PAU MAT II CC SOC. ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com

EJERCICIOS PAU MAT II CC SOC. ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com PROGRAMACIÓN LINEAL 1- Un deportista solamente puede tomar para desayunar barritas de chocolate y barritas de cereales. Cada barrita de chocolate proporciona 40 gramos de hidratos de carbono, 30 gramos

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Junio, Ejercicio 3, Parte II, Opción A Junio, Ejercicio 3, Parte II, Opción B Reserva

Más detalles

FUNCIONES RACIONALES. HIPÉRBOLAS

FUNCIONES RACIONALES. HIPÉRBOLAS www.matesronda.net José A. Jiménez Nieto FUNCIONES RACIONALES. HIPÉRBOLAS 1. FUNCIÓN DE PROPORCIONALIDAD INVERSA El área de un rectángulo es 18 cm 2. La siguiente tabla nos muestra algunas medidas que

Más detalles

TEMA 5 FUNCIONES ELEMENTALES II

TEMA 5 FUNCIONES ELEMENTALES II Tema Funciones elementales Ejercicios resueltos Matemáticas B º ESO TEMA FUNCIONES ELEMENTALES II Rectas EJERCICIO. Halla la pendiente, la ordenada en el origen y los puntos de corte con los ejes de coordenadas

Más detalles

Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 2 Cuanto más, mejor y viceversa

Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 2 Cuanto más, mejor y viceversa Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 2 Cuanto más, mejor y viceversa Seguro que alguna vez has tenido en tus manos algún cuadernillo de pasatiempos o has realizado algún test psicotécnico

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas)

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Análisis (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Problema 1: Sea la función Determina: a) El dominio de definición. b) Las asíntotas si existen. c) El o los intervalos de

Más detalles

Regla de la Potencia para la Integración

Regla de la Potencia para la Integración Regla de la Potencia para la Integración Ejercicios Resuelva cada Integral Problemas de Aplicación 1. El costo marginal ( en dólares) de una compañía que fabrica zapatos esta dado por, en donde x es el

Más detalles

A) 40 m/s. B) 20 m/s. C) 30 m/s. D) 10 m/s.

A) 40 m/s. B) 20 m/s. C) 30 m/s. D) 10 m/s. ESPOL Actividades en clase Taller Nombre: Paralelo 1) Cuál de las siguientes no es una cantidad vectorial? 1) A) aceleración. B) rapidez. C) todas son cantidades vectoriales D) velocidad. 2) Un avión vuela

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E. CURSO 01-013 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC. SS. - Cada alumno debe elegir sólo una de las pruebas (A o B). - Cada una de las preguntas

Más detalles

b) Haz otra distribución en 12 intervalos de la amplitud que creas conveniente.

b) Haz otra distribución en 12 intervalos de la amplitud que creas conveniente. Página EJERCICIOS Y PROBLEMAS PROPUESTOS PARA PRACTICAR Deseamos hacer una tabla con datos agrupados a partir de datos, cuyos valores extremos son 9 y. a) Si queremos que sean 0 intervalos de amplitud,

Más detalles

EJERCICIOS DE FÍSICA

EJERCICIOS DE FÍSICA EJERCICIOS DE FÍSICA 1. El vector posición de un punto, en función del tiempo, viene dado por: r(t)= t i + (t 2 +2) j (S.I.) Calcular: a) La posición, velocidad y aceleración en el instante t= 2 s.; b)

Más detalles

Unidad 4. Capitalización compuesta y descuento compuesto

Unidad 4. Capitalización compuesta y descuento compuesto Unidad 4. Capitalización compuesta y descuento compuesto 0. ÍNDICE. 1. CAPITALIZACIÓN COMPUESTA. 1.1. Concepto. 1.2. Cálculo de los intereses totales y del interés de un período s. 1.3. Cálculo del capital

Más detalles

Colegio Portocarrero. Curso 2014-2015. Departamento de matemáticas. Análisis y programación lineal

Colegio Portocarrero. Curso 2014-2015. Departamento de matemáticas. Análisis y programación lineal Análisis y programación lineal Problema 1: La gráfica de la función derivada de una función f es la parábola de vértice (0, 2) que corta al eje de abscisas en los puntos ( 3, 0) y (3, 0). A partir de dicha

Más detalles

[email protected]!!91.501.36.88!!28007!madrid!

www.academiacae.com!!info@academiacae.com!!91.501.36.88!!28007!madrid! CONTINUIDAD Y DERIVABILIDAD. TEOREMAS Y APLICACIONES DE LAS DERIVADAS 1.- junio 1994 Se sabe que y = f (x) e y = g (x) son dos curvas crecientes en x = a. Analícese si la curva y = f(x) g(x) ha de ser,

Más detalles

Representación gráfica de funciones. De la fórmula a la tabla. Resolución de problemas

Representación gráfica de funciones. De la fórmula a la tabla. Resolución de problemas REPRESENTACIÓN DE PUNTOS EN EL PLANO RELACIÓN ENTRE DOS MAGNITUDES Ejes de coordenadas y coordenadas de puntos FUNCIÓN Tipos: - Lineal. - Afín. - Constante. - De proporcionalidad inversa. - Cuadrática.

Más detalles

ECONOMÍA DE LA EMPRESA PROBLEMAS DE UMBRAL DE RENTABILIDAD

ECONOMÍA DE LA EMPRESA PROBLEMAS DE UMBRAL DE RENTABILIDAD ECONOMÍA DE LA EMPRESA PROBLEMAS DE UMBRAL DE RENTABILIDAD 1 Los alumnos de 2º curso del IES San Saturnino, con objeto de recabar fondos para su viaje de estudios, se plantean la posibilidad de vender

Más detalles

1. Conocimientos previos. 1 Funciones exponenciales y logarítmicas.

1. Conocimientos previos. 1 Funciones exponenciales y logarítmicas. . Conocimientos previos. Funciones exponenciales y logarítmicas.. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Intervalos y sus definiciones básicas.

Más detalles

LA RECTA. Recuerda: Ejercicios de autoaprendizaje 1. Sea la gráfica siguiente:

LA RECTA. Recuerda: Ejercicios de autoaprendizaje 1. Sea la gráfica siguiente: LA RECTA Recuerda: Una recta es una función de la forma y = mx + n, siendo m y n números reales m es la pendiente de la recta y n es la ordenada en el origen La ordenada en el origen nos indica el punto

Más detalles

LIMITE. Si f(x)= x 2 -x 6 = (x 3) (x + 2) = x + 3 x + 2 x + 2

LIMITE. Si f(x)= x 2 -x 6 = (x 3) (x + 2) = x + 3 x + 2 x + 2 LIMITE Qué se entiende por límite? De ordinario hablamos del precio límite de la velocidad límite del límite de nuestra propia resistencia los límites de la tecnología moderna o de estirar un muelle hasta

Más detalles

TEMAS 10 LAS FUNCIONES ELEMENTALES 1º BACH MATE I

TEMAS 10 LAS FUNCIONES ELEMENTALES 1º BACH MATE I TEMA 0 FUNCIONES ELEMENTALES MATEMÁTICAS I º Bach. TEMAS 0 LAS FUNCIONES ELEMENTALES º BACH MATE I Son funciones? Ejercicio : Indica cuáles de las siguientes representaciones corresponden a la gráfica

Más detalles

1. Aplique el método de inducción matemática para probar las siguientes proposiciones. e) f) es divisible por 6. a) b) c) d) e) f)

1. Aplique el método de inducción matemática para probar las siguientes proposiciones. e) f) es divisible por 6. a) b) c) d) e) f) 1. Aplique el método de inducción matemática para probar las siguientes proposiciones. a) b) c) d) e) f) es divisible por 6. g) 2. Halle la solución de las siguientes desigualdades de primer orden. g)

Más detalles

CONTINUIDAD Y DERIVABILIDAD

CONTINUIDAD Y DERIVABILIDAD . Sea la función f ( ) = 6 CONTINUIDAD Y DERIVABILIDAD a. Determine sus puntos de corte con los ejes. b. Calcule sus etremos relativos y su punto de infleión. c. Represente gráficamente la función.. Sea

Más detalles

1. ESQUEMA - RESUMEN Página 2. 2. EJERCICIOS DE INICIACIÓN Página 12. 3. EJERCICIOS DE DESARROLLO Página 14. 4. EJERCICIOS DE AMPLIACIÓN Página 15

1. ESQUEMA - RESUMEN Página 2. 2. EJERCICIOS DE INICIACIÓN Página 12. 3. EJERCICIOS DE DESARROLLO Página 14. 4. EJERCICIOS DE AMPLIACIÓN Página 15 1. ESQUEMA - RESUMEN Página 2 2. EJERCICIOS DE INICIACIÓN Página 12 3. EJERCICIOS DE DESARROLLO Página 14 4. EJERCICIOS DE AMPLIACIÓN Página 15 5. EJERCICIOS DE REFUERZO Página 6. EJERCICIOS RESUELTOS

Más detalles

FUNCIONES TRIGONOMÉTRICAS, EXPONENCIALES Y LOGARÍTMICAS

FUNCIONES TRIGONOMÉTRICAS, EXPONENCIALES Y LOGARÍTMICAS UNIDAD 5 FUNCIONES TRIGONOMÉTRICAS, EPONENCIALES Y LOGARÍTMICAS Página. La distancia al suelo de una barquilla de la noria varía conforme ésta gira. Representamos gráficamente la función que da la altura

Más detalles

LANZAMIENTO HACIA ARRIBA POR UN PLANO INCLINADO

LANZAMIENTO HACIA ARRIBA POR UN PLANO INCLINADO LANZAMIENTO HACIA ARRIBA POR UN PLANO INCLINADO 1.- Por un plano inclinado de ángulo y sin rozamiento, se lanza hacia arriba una masa m con una velocidad v o. Se pide: a) Fuerza o fuerzas que actúan sobre

Más detalles

SELECTIVIDAD. (Hasta modelo 2012) PROBLEMAS UNIDAD 5

SELECTIVIDAD. (Hasta modelo 2012) PROBLEMAS UNIDAD 5 SELECTIVIDAD (Hasta modelo 2012) PROBLEMAS UNIDAD 5 13. Supongamos una empresa que produce un determinado bien X y que para ello genera los siguientes costes mensuales: Retribución fija a los empleados:

Más detalles

DOCUMENTO 3: DISTRIBUCIÓN DE PROBABILIDAD DE V. A. CONTINUA: LA DISTRIBUCIÓN NORMAL

DOCUMENTO 3: DISTRIBUCIÓN DE PROBABILIDAD DE V. A. CONTINUA: LA DISTRIBUCIÓN NORMAL DOCUMENTO 3: DISTRIBUCIÓN DE PROBABILIDAD DE V. A. CONTINUA: LA DISTRIBUCIÓN NORMAL 3.1 INTRODUCCIÓN Como ya sabes, una distribución de probabilidad es un modelo matemático que nos ayuda a explicar los

Más detalles

PRUEBAS DE SELECTIVIDAD. Función real de variable real. Continuidad.

PRUEBAS DE SELECTIVIDAD. Función real de variable real. Continuidad. MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II IES Salvador Serrano - DtoMatemáticas (Daniel García) 01 / 13 PRUEBAS DE SELECTIVIDAD Función real de variable real Continuidad EJERCICIO 1- Se sabe que

Más detalles

a=20 cm/s 2 v o =0 t=1 min=60 seg v? e? v=v 0 + at m/s x 3.6=km/h e=v 0 t+1/2at 2 v 2 -v 2 0 =2ae v=v 0 + at v=0+20 60=1200 cm/s

a=20 cm/s 2 v o =0 t=1 min=60 seg v? e? v=v 0 + at m/s x 3.6=km/h e=v 0 t+1/2at 2 v 2 -v 2 0 =2ae v=v 0 + at v=0+20 60=1200 cm/s Ejercicios resueltos TEMA 02 1. La distancia que separa dos señales consecutivas de una carretera recta es de 60 metros. Calcular el tiempo que emplea un móvil en recorrer dicha distancia si su velocidad

Más detalles

1. y = 3x 5-4x y = x+ln x 3. y = 2x 2 -e 2 4. y = xe x 5. y = x x 6. y = x+2 x-2

1. y = 3x 5-4x y = x+ln x 3. y = 2x 2 -e 2 4. y = xe x 5. y = x x 6. y = x+2 x-2 Colección A.. Calcula la derivada de las siguientes funciones:. y = 5-4 -4. y = +ln. y = -e 4. y = e 5. y =. y = + 7. y = ln 8. y = e + 9. y = (+) 0. y =. y = e -. y = (-)e - e. y = - 4. y = ln 5. y =

Más detalles

MOVIMIENTO UNIFORMEMENTE ACELERADO

MOVIMIENTO UNIFORMEMENTE ACELERADO MOVIMIENTO UNIFORMEMENTE ACELERADO El movimiento rectilíneo uniformemente aceleradoes un tipo de movimiento frecuente en la naturaleza. Una bola que rueda por un plano inclinado o una piedra que cae en

Más detalles

Cálculo Diferencial e Integral - Recta tangente y velocidad. Farith J. Briceño N.

Cálculo Diferencial e Integral - Recta tangente y velocidad. Farith J. Briceño N. Cálculo Diferencial e Integral - Recta tangente y velocidad. Farit J. Briceño N. Objetivos a cubrir Código : MAT-CDI.7 Problema: Recta tangente a una curva en un punto 0. Problema: Velocidad promedio y

Más detalles

Hoja 5: Sucesiones y aritmética mercantil

Hoja 5: Sucesiones y aritmética mercantil Hoja 5: Sucesiones y aritmética mercantil 1 Hoja 5: Sucesiones y aritmética mercantil 1 May 2000 En una sucesión aritmética, el primer término es 5 y el cuarto término es 40. Halle el segundo término.

Más detalles

CINEMÁTICA. Es la línea imaginaria que describe el móvil durante o su movimiento.

CINEMÁTICA. Es la línea imaginaria que describe el móvil durante o su movimiento. CINEMÁTICA DEFINICIONES BÁSICAS MOVIMIENTO Se dice que un cuerpo está en movimiento si cambia su posición con el tiempo con respecto a un punto que consideramos fijo (sistema de referencia). La parte de

Más detalles

OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Variables. Relación funcional.

OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Variables. Relación funcional. 86 _ 069-078.qxd 7//07 : Página 69 Funciones INTRODUCCIÓN El concepto de función es uno de los más importantes que se tratan en este curso y, aunque no reviste una especial dificultad, plantea a veces

Más detalles

MANUAL FONDOS DE INVERSION. Cuarta EDICION, revisada y actualizada con los últimos cambios fiscales*

MANUAL FONDOS DE INVERSION. Cuarta EDICION, revisada y actualizada con los últimos cambios fiscales* MANUAL DE FONDOS DE INVERSION Cuarta EDICION, revisada y actualizada con los últimos cambios fiscales* La actualización y revisión de esta cuarta edición del Manual de Fondos de Inversión ha corrido a

Más detalles

Tabla de Derivadas. Función Derivada Función Derivada. f (x) n+1. f (x) y = f (x) y = ln x. y = cotg f (x) y = ( 1 cotg 2 f (x)) f (x) = f (x)

Tabla de Derivadas. Función Derivada Función Derivada. f (x) n+1. f (x) y = f (x) y = ln x. y = cotg f (x) y = ( 1 cotg 2 f (x)) f (x) = f (x) Matemáticas aplicadas a las CCSS - Derivadas Tabla de Derivadas Función Derivada Función Derivada y k y 0 y y y y y f ) y f ) f ) y n y n n y f ) n y n f ) n f ) y y n y y f ) y n n+ y f ) n y f ) f )

Más detalles

x + x 2 +1 = 1 1 = 0 = lím

x + x 2 +1 = 1 1 = 0 = lím UNIDAD Asíntota horizontal: 8 [email protected] + + = y = es asíntota horizontal hacia [email protected] (y > ). + + + + = = = 0 8 @ 8 [email protected] y = 0 es asíntota horizontal hacia @ (y < 0). CUESTIONES TEÓRICAS 30 Qué podemos decir del grado

Más detalles

1.- CONCEPTO DE FUNCIÓN

1.- CONCEPTO DE FUNCIÓN .- CONCEPTO DE FUNCIÓN Actividades del alumno/a Explica porqué la siguiente gráfica no corresponde a una función: Porque a un valor de x, por ejemplo x =, le corresponde más de un valor de y. .- CONCEPTO

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA C u r s o : Matemática Material N 6 GUÍA TEÓRICO PRÁCTICA Nº UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA Una ecuación de segundo grado es una ecuación de la forma, o que

Más detalles

1. [ANDA] [EXT-A] En una empresa de montajes el número de montajes diarios realizados por un trabajador depende de los días

1. [ANDA] [EXT-A] En una empresa de montajes el número de montajes diarios realizados por un trabajador depende de los días 1. [ANDA] [EXT-A] En una empresa de montajes el número de montajes diarios realizados por un trabajador depende de los días trabajados según la función M(t) = 11t+17, t 1, donde t es el número de días

Más detalles

EJERCICIOS RESUELTOS DE DERIVADAS DE FUNCIONES REALES DE UNA VARIABLE REAL

EJERCICIOS RESUELTOS DE DERIVADAS DE FUNCIONES REALES DE UNA VARIABLE REAL EJERCICIOS RESUELTOS DE DERIVADAS DE FUNCIONES REALES DE UNA VARIABLE REAL Ejercicio nº 1.- Calcula (), utilizando la definición de derivada, siendo: f () + 5 f ( + ) f () ( + ) + 5( + ) 18 (4 + 4 + )

Más detalles

Guía de Repaso 1: Introducción

Guía de Repaso 1: Introducción Guía de Repaso 1: Introducción 1- La distancia de la Tierra al Sol es casi 104 veces mayor que el diámetro de la Tierra. Al estudiar el movimiento de ésta alrededor del Sol, diría usted que la podemos

Más detalles

UMBRAL DE RENTABILIDAD

UMBRAL DE RENTABILIDAD UMBRAL DE RENTABILIDAD Enunciado Problema 2 1. Hallar el punto umbral de una empresa dedicada a la fabricación del producto X si tiene unos costes fijos de 50.000 u.m., unos ingresos de 90.000 u.m., y

Más detalles

ENERGÍA POTENCIAL Y CINÉTICA

ENERGÍA POTENCIAL Y CINÉTICA ENERGÍA POTENCIAL Y CINÉTICA Área disciplinar: Ciencias Naturales - Física Temática: Energía. Concepto. Características Nivel: Secundario. 1º año. Ciclo básico. Energía potencial Es la energía almacenada

Más detalles

Funciones racionales, irracionales, exponenciales y logarítmicas

Funciones racionales, irracionales, exponenciales y logarítmicas Funciones racionales, irracionales, eponenciales y logarítmicas. Funciones racionales Despeja y de la epresión y = 6. Qué tipo de función es? P I E N S A C A L C U L A 6 y = Es una función racional que

Más detalles

MOVIMIENTO RECTILINEO UNIFORME

MOVIMIENTO RECTILINEO UNIFORME Física y Química 4ºESO Ejercicios complementarios MOVIMIENTO RECTILINEO UNIFORME 1. - Un corredor hace los 400 metros lisos en 50 seg. Calcula la velocidad en la carrera. Sol-8m/s 2. - Un automovilista

Más detalles

ejercicios y problemas de PROGRESIONES ARITMÉTRICAS Y GEOMÉTRICAS

ejercicios y problemas de PROGRESIONES ARITMÉTRICAS Y GEOMÉTRICAS EJERCICIOS Y PROBLEMAS RESUELTOS AL FINAL DEL DOCUMENTO 1. Halla los términos a 1, a 2 y a 10 de las siguientes sucesiones, cuyo término general se da: a) b) c) d) e) 2. Calcula el término general de las

Más detalles

Propuesta A. 2 0 b) Dada la ecuación matricial: X = , despeja y calcula la matriz X. (0.75 ptos) 2 1

Propuesta A. 2 0 b) Dada la ecuación matricial: X = , despeja y calcula la matriz X. (0.75 ptos) 2 1 Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (015) Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumno deberá contestar a una de las dos opciones propuestas A o B. Se

Más detalles

Guía Práctica N 11 ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA

Guía Práctica N 11 ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA Fuente: PreUniversitario Pedro de Valdivia Guía Práctica N 11 ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA Una ecuación de segundo grado es una ecuación susceptible de llevar a la forma a + b + c = 0,

Más detalles

4º ESO EJERCICIOS DE ESTADÍSTICA

4º ESO EJERCICIOS DE ESTADÍSTICA 4º ESO EJERCICIOS DE ESTADÍSTICA 1. El número de hermanos de los alumnos de una clase es el siguiente: 1 3 2 1 4 1 1 2 1 1 2 1 1 2 1 3 2 1 2 3 5 a) Efectúa el recuento. b) Elabora una tabla de frecuencias

Más detalles

DEPARTAMENTO DE FISICA Guía de Energía

DEPARTAMENTO DE FISICA Guía de Energía DEPARTAMENTO DE FISICA Guía de Energía El Movimiento Perpetuo Hace ya siglos que las instituciones científicas reciben proyectos de supuestos móviles perpetuos. Ya en 1775 la Academia de Ciencias de París

Más detalles

Opción A. Alumno. Fecha: 23 Noviembre 2012

Opción A. Alumno. Fecha: 23 Noviembre 2012 Fecha: 3 Noviembre 0 Opción A Alumno. Ejercicio nº.- a) Resuelve el siguiente sistema, utilizando el método de Gauss: +=3 3+ = 3 3+3=9 +4 4= 3 3 3 3 4+ 5 0 0 0 3 3 9 5 0 0 0 5 0 0 3 0 6 5 0 0 0 Rango A

Más detalles

3. LA COMBINACION DE FACTORES Y LA PRODUCTIVIDAD DE LA EMPRESA

3. LA COMBINACION DE FACTORES Y LA PRODUCTIVIDAD DE LA EMPRESA 3. LA COMBINACION DE FACTORES Y LA PRODUCTIVIDAD DE LA EMPRESA Como se sabe, la producción es el proceso mediante el cual se generan los bienes y servicios que las sociedades compran con el fin de consumirlos

Más detalles

Introducción a las ecuaciones diferenciales

Introducción a las ecuaciones diferenciales Matemáticas. 1 de Biología http://orion.ciencias.uniovi.es/asignaturas/biomat Facultad de Biología Curso 25-26 Introducción a las ecuaciones diferenciales 1. Probar que cada función dada es solución de

Más detalles

$ 2500 9000 5000 9000 : ; x 18000

$ 2500 9000 5000 9000 : ; x 18000 1 de 10 MAGNITUDES DIRECTAMENTE PROPORCIONALES Descripción matemática: Dos magnitudes son directamente proporcionales cuando: Magnitud A a a a... Magnitud B b b b... El cociente o razón de las cantidades

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES 0 FUNCIONES ELEMENTALES Página PARA EMPEZAR, REFLEIONA RESUELVE Problema Las siguientes gráficas corresponden a funciones, algunas de las cuales conoces y otras no. En cualquier caso, vas a trabajar con

Más detalles

El alumno deberá contestar al bloque de respuesta obligada y elegir una de las dos alternativas. BLOQUE DE RESPUESTA OBLIGADA

El alumno deberá contestar al bloque de respuesta obligada y elegir una de las dos alternativas. BLOQUE DE RESPUESTA OBLIGADA El alumno deberá contestar al bloque de respuesta obligada y elegir una de las dos alternativas. BLOQUE DE RESPUESTA OBLIGADA Una empresa industrial fabrica un único producto que vende al precio de 375

Más detalles

Finanzas Internacionales: Capítulo 2: Paridad de Tasas de Interés

Finanzas Internacionales: Capítulo 2: Paridad de Tasas de Interés Finanzas Internacionales: Capítulo 2: Paridad de Tasas de Interés U n i v e r s i d a d N a c i o n a l d e P i u r a F a c u l t a d d e E c o n o m í a Profesor: Julio César Casaverde Vegas P i u r a

Más detalles

EJERCICIOS INTERES COMPUESTO

EJERCICIOS INTERES COMPUESTO EJERCICIOS INTERES COMPUESTO Nº1.- Una persona pide prestada la cantidad de $800. Cinco años después devuelve $1.020. Determine la tasa de interés nominal anual que se le aplicó, si el interés es: a) Simple

Más detalles

SUDOMATES DE LA GRÁFICA DE UNA FUNCIÓN

SUDOMATES DE LA GRÁFICA DE UNA FUNCIÓN SUDOMATES DE LA GRÁFICA DE UNA FUNCIÓN Observaciones: En la página de este blog titulada SUDOMATES se explica cómo se puede aprovechar la atracción de los sudokus entre muchos de nuestros alumnos, para

Más detalles

BLOQUE 4. CÁLCULO DIFERENCIAL DE FUNCIONES REALES DE UNA VARIABLE. ESTUDIO DE LA GRÁFICA DE UNA FUNCIÓN

BLOQUE 4. CÁLCULO DIFERENCIAL DE FUNCIONES REALES DE UNA VARIABLE. ESTUDIO DE LA GRÁFICA DE UNA FUNCIÓN BLOQUE 4. CÁLCULO DIFERENCIAL DE FUNCIONES REALES DE UNA VARIABLE. ESTUDIO DE LA GRÁFICA DE UNA FUNCIÓN Crecimiento y decrecimiento. Extremos absolutos y relativos. Concavidad y convexidad. Asíntotas.

Más detalles

El interés y el dinero

El interés y el dinero El interés y el dinero El concepto de interés tiene que ver con el precio del dinero. Si alguien pide un préstamo debe pagar un cierto interés por ese dinero. Y si alguien deposita dinero en un banco,

Más detalles

Problemas de Física 1 o Bachillerato

Problemas de Física 1 o Bachillerato Problemas de Física 1 o Bachillerato Conservación de la cantidad de movimiento 1. Calcular la velocidad de la bola m 2 después de la colisión, v 2, según se muestra en la siguiente figura. El movimiento

Más detalles

SEGMENTOS RECTILÍNEOS: DIRIGIDOS Y NO DIRIGIDOS

SEGMENTOS RECTILÍNEOS: DIRIGIDOS Y NO DIRIGIDOS SEGMENTOS RECTILÍNEOS: DIRIGIDOS Y NO DIRIGIDOS A la porción de una línea recta comprendida entre dos de sus puntos se llama segmento rectilíneo o simplemente segmento. Los dos puntos se llaman extremos

Más detalles

EXAMEN PAU SEPTIEMBRE 2011 OPCIÓN A SOLUCIÓN DE LOS PROBLEMAS

EXAMEN PAU SEPTIEMBRE 2011 OPCIÓN A SOLUCIÓN DE LOS PROBLEMAS EXAMEN PAU SEPTIEMBRE 2011 OPCIÓN A SOLUCIÓN DE LOS PROBLEMAS 5- De una determinada empresa se conocen los siguientes datos: Periodo medio de aprovisionamiento: 20 días. Periodo medio de fabricación: 30

Más detalles

Ecuaciones de segundo grado

Ecuaciones de segundo grado Ecuaciones de segundo grado Contenidos 1. Expresiones algebraicas Identidad y ecuación Solución de una ecuación. Ecuaciones de primer grado Definición Método de resolución Resolución de problemas 3. Ecuaciones

Más detalles

9. Rectas e hipérbolas

9. Rectas e hipérbolas 08 SOLUCIONARIO 9. Rectas e hipérbolas Representa gráficamente las siguientes ecuaciones. Di cuáles son funciones y clasifícalas: 8. y =. FUNCIONES CONSTANTES LINEALES PIENSA CALCULA y = Halla mentalmente

Más detalles

4. Matemática financiera.

4. Matemática financiera. 4. Matemática financiera. Autora: Maite Seco Benedicto MATEMÁTICAS FINANCIERAS BÁSICAS Las Matemáticas financieras son una herramienta imprescindible para poder valorar las operaciones financieras, tanto

Más detalles

EJERCICIOS DE ESTADÍSTICA

EJERCICIOS DE ESTADÍSTICA EJERCICIOS DE ESTADÍSTICA 1) El número de hermanos de los alumnos de una clase es el siguiente: 1 3 2 1 4 1 1 2 1 1 2 1 1 2 1 3 2 1 2 3 5 a) Efectúa el recuento. b) Elabora una tabla de frecuencias en

Más detalles

5 Operaciones. con polinomios. 1. Polinomios. Suma y resta

5 Operaciones. con polinomios. 1. Polinomios. Suma y resta 5 Operaciones con polinomios 1. Polinomios. Suma y resta Dado el cubo de la figura, calcula en función de : a) El área. b) El volumen. a) A() = 6 2 b) V() = 3 P I E N S A Y C A L C U L A 1 Dado el prisma

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E. CURSO 014-015 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC. SS. 1 - Cada alumno debe elegir sólo una de las pruebas (A o B). - Cada una de las preguntas

Más detalles

Selectividad Junio 2007 JUNIO 2007

Selectividad Junio 2007 JUNIO 2007 Bloque A JUNIO 2007 1.- Julia, Clara y Miguel reparten hojas de propaganda. Clara reparte siempre el 20 % del total, Miguel reparte 100 hojas más que Julia. Entre Clara y Julia reparten 850 hojas. Plantea

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio

Más detalles

MATEMÁTICAS FINANCIERAS CAPITULO 3 APLICACIÓN INTERÉS COMPUESTO EJERCICIOS RESUELTOS

MATEMÁTICAS FINANCIERAS CAPITULO 3 APLICACIÓN INTERÉS COMPUESTO EJERCICIOS RESUELTOS 1. Se constituye un CDT a 180 días por $650.000, con una tasa del 26% NTA y teniendo en cuenta que la retención en la fuente es de 7%, Determinar: a) La rentabilidad antes de impuestos. b) La rentabilidad

Más detalles

PARTE COMÚN MATERIA: FUNDAMENTOS DE MATEMÁTICAS

PARTE COMÚN MATERIA: FUNDAMENTOS DE MATEMÁTICAS CALIFICACIÓN: Consejería de Educación, Ciencia y Cultura PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL Junio 2011 Resolución de 9 de marzo de 2011 (DOCM de 5 de abril)

Más detalles

DIVISIBILIDAD. 1º relación de divisibilidad: múltiplos y divisores.

DIVISIBILIDAD. 1º relación de divisibilidad: múltiplos y divisores. CEPA Carmen Conde Abellán Matemáticas IyII Divisibilidad DIVISIBILIDAD 1º relación de divisibilidad: múltiplos y divisores. Dos números están emparentados por la relación de divisibilidad cuando el cociente

Más detalles

EJERCICIOS DE ESTADÍSTICA DESCRIPTIVA Ejercicios tema 2

EJERCICIOS DE ESTADÍSTICA DESCRIPTIVA Ejercicios tema 2 EJERCICIOS DE ESTADÍSTICA DESCRIPTIVA Ejercicios tema 2 2. Un grupo de 0 estudiantes de un curso de postgrado se dispone a evaluar la calidad del mismo en una escala con las siguientes modalidades: MALO,

Más detalles