CÁLCULO DIFERENCIAL Muestras de examen


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CÁLCULO DIFERENCIAL Muestras de examen"

Transcripción

1 CÁLCULO DIFERENCIAL Muestras de examen

2 Febrero 2012 T1. [2] Demostrar que la imagen continua de un conjunto compacto es compacto. T2. [2.5] Definir la diferencial de una función en un punto y demostrar que si una función diferenciable en un abierto conexo tiene diferencial nula en todos los puntos entonces es una función constante. T3. [2.5] Enunciar el lema de Schwarz sobre derivadas cruzadas y completar su demostración a partir de la igualdad f(x 0 + u + v) f(x 0 + u) f(x 0 + v) + f(x 0 ) = D v D u f(x 0 + αu + βv). T4. [3] Enunciar y demostrar el teorema de las funciones implícitas. Problema 1. [3] Se considera la aplicación f = (f 1, f 2 ) : R 2 R (x2 + y 2, y 6 ), y denotamos S R 2 el cuadrado abierto dado por 0 < x < 1, 0 < y < 1. Se pide: (1) Acotar en S la norma de los gradientes de las componentes de f. (2) Utilizar el teorema del valor medio para probar que f es contractiva en S. (3) Mostrar que f(s) S. (4) Tiene f puntos fijos en S? Contradice esto el teorema de la aplicación contractiva? Problema 2. (a) [1] Estudiar la continuidad de la función siguiente en el punto (1, 1). x 3 y 2 si x 2 y, x 2 y 0 en otro caso. (b) [1.5] Estudiar la diferenciabilidad de la función siguiente en los puntos (0, 0) y (0, 1 π ). xy sen x y si y 0, 0 en otro caso. Problema 3. [2] Estudiar si la función h(x, y, z) = x 2 + y 4 (1 z 2 ) z tiene extremos. Problema 4. [2.5] Se considera el sistema 0 = sen π w, 1 = e x+u, 1 = 2x u + v w, y se pide: (1) Comprobar que el punto (0, 0, 0, 1) es una solución del sistema, y que las variables u, v, w se pueden despejar en función de x en un entorno suyo. (2) Sea H(x) = (u(x), v(x), w(x)) una aplicación de clase C 1 en un entorno de 0 tal que (i) H(0) = (0, 0, 1) y (ii) (x, H(x)) es solución del sistema. Calcular dh(0). 1

3 Septiembre 2012 T1. [2] Qué es una aplicación uniformemente continua? Demostrar que toda aplicación continua en un compacto es uniformemente continua. T2. [2] Definir los conceptos de derivada direccional, gradiente y diferencial de una función en un punto. Demostrar que si una función tiene todas sus derivadas parciales continuas en un abierto, entonces es diferenciable. T3. [3] Definir la Hessiana de una función de clase C 2 en un punto, y establecer mediante ella una condición suficiente para que un punto crítico sea un máximo local. T4. [3] Explicar con detalle qué es un punto crítico condicionado y qué son los multiplicadores de Lagrange. Problema 1. [3] Se consideran en plano R 2 los conjuntos y la función definida para (x, y) (0, 0). Se pide: A : 0 < x 2 + y 2 < 1 y B : 0 < x 2 + y 2 < 1, x 0, x2 x 2 + y 2, (1) Determinar si f alcanza un máximo o un mínimo en A o en B. (2) Estudiar si los conjuntos f(a) y f(b) son acotados y calcular su diámetro. Son conexos? Problema 2. (a) [1] Estudiar la continuidad en el origen de la función (tan x)(sen y) para (x, y) (0, 0), x 2 +y 2 0 para (x, y) = (0, 0). (b) [1] Estudiar la diferenciabilidad en el origen de la función x y para (x, y) (0, 0), x 2 +y 2 0 para (x, y) = (0, 0). Problema 3. la función [2] Estudiar, según los valores del parámetro a, los puntos críticos y los extremos de (y ax)e y + e x. Problema 4. [3] Se considera en R 4 el sistema de ecuaciones u 5 + v = x Se pide: u 2 + v 3 = x 2. (1) Mostrar que el sistema anterior define una solución (u, v) = H(x) de clase C 1 en un entorno de x = 0 tal que H(0) = (1, 1). (2) Calcular la derivada en x = 0 de la función f H, siendo f(u, v) = u 3 v. 2

4 Febrero 2013 T1. [2] Qué es una aplicación contractiva? Enunciar el teorema del punto fijo para aplicaciones contractivas. T2. [3] Demostrar que una aplicación uniformemente continua en un conjunto S R n se extiende con continuidad a cualquier punto de su adherencia S. T3. [2] Qué es un punto crítico de una función diferenciable? Explicar cómo se utiliza la hessiana para estudiar si un punto crítico es un extremo local. T4. [3] Sea f : A R n una aplicación de clase C 1 definida en un abierto de R n. Demostrar que si su determinante jacobiano no se anula en un punto dado a A, entonces existe una bola B(a, ε) A en la que f es inyectiva. Problema 1. [3] Se consideran en plano R 2 el conjunto S definido por las dos inecuaciones y la función Se pide: (x 1) 2 + y 2 1, y 0, x 8 (1 y 8 ). (1) Es conexo el conjunto S? Lo es su imagen? (2) Calcular los extremos de f y la imagen f(s). (3) Deducir del teorema del valor medio una acotación en S del tipo f(x, y) ax+by para ciertas constantes positivas a, b R. Problema 2. [2] Mostrar que la función es de clase C 1. Es de clase C 2? cos(xy) para xy 0, 1 + x 2 y 2 para xy < 0, Problema 3. [2] Se considera la función diferenciable h(x, y) = x 3 + y 3 3xy. Calcular sus puntos críticos y estudiar si son extremos locales. Problema 4. [3] Se consideran en R 3 la función diferenciable h(x, y, z) = xyz y el elipsoide M R 3 de ecuación x 2 + 4y 2 + 9z 2 = 1. Se pide: (1) Comprobar que M es una subvariedad regular de dimension 2 de R 3, y que es un conjunto compacto. (2) Encontrar los puntos críticos condicionados de h en M, y obtener el máximo y el mínimo de h en M. 3

5 Septiembre 2013 T1. [2] Definir (i) conjunto conexo y (ii) conjunto convexo. Demostrar que todo conjunto convexo es conexo. Es cierto el recíproco? T2. [2] Qué es una aplicación uniformemente continua? Mostrar con un ejemplo que una aplicación continua puede no ser uniformemente continua. T3. [3] Enunciar y demostrar una condición suficiente para que un punto crítico de una función de clase C 2 sea un mínimo local. T4. [3] Definir subvariedad regular de dimensión d de R n. Describir el espacio tangente a una subvariedad en un punto dado y explicar qué son los multiplicadores de Lagrange. Problema 1. [2] Se considera la función definida en todo el plano salvo el origen. Se pide: x6 + y 6 x 2 + y 2 (1) Definirla en el origen para que sea continua. (2) Es además de clase C 1? Problema 2. [2] Se considera la aplicación (x 3 +x 2 y, xy 2 +y 3 ), definida en un disco cerrado B de centro el origen y radio ε > 0. (1) Acotar en B la norma de los gradientes de las componentes de f. (2) Deducir del teorema del valor medio que si ε es suficientemente pequeño, f es contractiva en B. Problema 3. [3] Se considera la función diferenciable h(x, y, z) = x 2y 3x 3 + y 2 + cos z. (1) Escribir su desarrollo de Taylor de grado 4 en el punto (1, 1, 0). (2) Calcular sus puntos críticos y estudiar si son extremos locales. (3) Tiene h extremos globales? Problema 4. [3] Se considera el sistema de ecuaciones xe u + yu v 2 = 0, y se pide: y sen u + x 2 v 2 = 0, (1) Comprobar que el sistema define implícitamente las variables u y v como funciones de x e y en un entorno del punto (x, y, u, v) = (1, 1, 0, 1). (2) Estudiar si la aplicación resultante (u(x, y), v(x, y)) es un difeomorfismo local en el punto (1, 1). 4

6 Febrero 2014 T1. [3] Qué es un conjunto conexo? Enunciar una condición suficiente para que una unión de conjuntos conexos sea conexa. Utilizar esa condición suficiente para demostrar que una poligonal es un conjunto conexo. T2. [3] Definir las derivadas direccionales, las derivadas parciales y el gradiente de una función en un punto. Definir función diferenciable en un punto y su diferencial en ese punto. Explicar la relación entre la diferencial y el gradiente de una función en un punto. T3. [4] Enunciar y demostrar el teorema de las funciones implícitas. Problema 1. [2] Se considera la función x x 4 +y 4 para (x, y) (0, 0), (x 2 +y 2 ) 2 0 para (x, y) = (0, 0), y se pide: (1) Mostrar que es continua. (2) Estudiar si f es diferenciable en el origen. Problema 2. [3] Se considera la función diferenciable de dos variables h(x, y) = x 2 y y 2 x + x 3 y 3. (1) Calcular los puntos críticos de h y la Hessiana de h en cada uno de ellos. (2) Determinar si son extremos usando la factorización h(x, y) = (x + y) 2 (x y). Problema 3. [2] Escribir el desarrollo de Taylor de grado 2 en y = 0 de la función diferenciable x = h(y) definida implícitamente por 2 cos 2 x yx = 1 en un entorno de (π/4, 0). Problema 4. [3] Se consideran en plano R 2 la circunferencia unidad C : x 2 + y 2 = 1, la porción de disco S : x 2 + y 2 1, x > 0, y > 0 y la función h(x, y) = xy 2. Se pide: (1) Mostrar que h no tiene puntos críticos en el interior de S. (2) Obtener los puntos críticos condicionados de h en C. (3) Mostrar que h(s) es un conjunto conexo y calcularlo. 5

7 Septiembre 2014 T1. [2,5] (a) Definir el concepto de aplicación contractiva. Enunciar el Teorema del punto fijo para aplicaciones contractivas. (b) Se considera la aplicación f = (f 1, f 2 ) : R 2 R 2 dada por 1 8 (x2 + y 2, y 6 ), y se denota S R 2 el cuadrado abierto dado por 0 < x < 1, 0 < y < 1. Se pide: (1) Mostrar que f(s) S, de modo que f : S S está bien definida. (2) Acotar en S la norma de los gradientes de las componentes de f. (3) Aplicar el teorema del valor medio a las componentes de f y las acotaciones de (2) para probar que f es contractiva en S. (4) Probar que f : S S no tiene puntos fijos en S. Contradice esto el teorema de la aplicación contractiva? T2. [1,5] Enunciar y demostrar el Teorema de Bolzano-Weiertrass. Problema 1. [2] Sea g(t) = t 2 sen 1 t si t 0, 0 si t = 0, y se define f : R 2 R por g(x) + g(y). Estudiar la continuidad y diferenciabilidad de f. Son continuas las funciones D 1 f = f/ x y D 2 f = f/ y? Problema 2. [1,5] Sea f : R 2 R 2 dada por (xe y, xe y ). Es f localmente invertible?, y globalmente? Determina el mayor subconjunto abierto de R 2 donde f sea inyectiva. Problema 3. [2,5] Consideremos las funciones x 2 y y g(x, y) = x 3 y + log x + log y, definidas en R 2 y R + R + respectivamente. Se pide: (1) Determinar los posibles extremos de f sobre el conjunto (x, y) R + R + : g(x, y) = 0}. (2) Demostrar que la ecuación g(x, y) = 0 define y como función y(x) en un entorno de cada punto (a, b) que verifique dicha ecuación. (3) Determinar (a, b) para que la función F (x) = f(x, y(x)), definida en un entorno de a, tenga un máximo local en a. Cómo interviene aquí el apartado (1)? 6

8 Febrero 2015 T1. (1) Enunciar el teorema de Bolzano-Weierstrass. (2) Deducir del teorema enunciado que la imagen continua de un compacto es compacta. T2. (1) Enunciar el teorema del valor medio. (2) Deducir del teorema anterior que si una función diferenciable f : U R definida en un abierto convexo U R n tiene todas sus derivadas parciales acotadas es Lipschitziana y uniformemente continua. T3. (1) Qué es un punto crítico de una función diferenciable? Demostrar que un extremo local de una función diferenciable es necesariamente un punto crítico. (2) Demostrar que si una función continua f : K R en un compacto K R n es diferenciable en su interior y se anula en su frontera, entonces tiene algún punto crítico en su interior. T4. (1) Definir difeomorfismo local y demostrar que el determinante jacobiano de un difeomorfismo local es no nulo. (2) Enunciar el teorema de inversión local y hacer un esquema de su demostración. Problema 1. Se fija un número natural m 1 y se considera la función definida en todo el plano salvo el origen. Se pide: (x + y) m x2 y 2 x 4 + y 4 (1) Definirla en el origen para que sea continua. (2) Estudiar para qué valores de m la función es diferenciable. Problema 2. Se considera la función f : R 2 R dada por x 3 + xy + y 3, así como el gradiente g = f : R 2 R 2. (1) Calcular los puntos críticos de f. (2) Mostrar que g = f es un difeomorfismo local en cada punto crítico anterior. Estudiar si son extremos. (3) Escribir el polinomio de Taylor de grado 2 de f en uno de esos puntos críticos. (4) Calcular la diferencial dg 1 (g(p)) para cada punto crítico p de f. Problema 3. Se consideran en R 3 la función diferenciable h(x, y, z) = x 2 y z y la cuádrica Q R 3 de ecuación z 2 1 = x 2 + 4y 2. Se pide: (1) Comprobar que Q es una superficie regular. (2) Calcular el plano tangente T p Q a Q en un punto arbitrario p Q. Es tangente a Q la recta que une p con el origen? (3) Encontrar los puntos críticos condicionados de h en Q. (4) Estudiar si esos puntos son extremos locales de h en Q calculando las hessianas pertinentes. 7

9 Septiembre 2015 T1. (1) Demostrar que la imagen continua de un conjunto conexo es conexa. (2) Es convexa la imagen continua de un conjunto convexo? T2. (1) Definir las derivadas direccionales, el gradiente y la diferencial de una función en un punto. (2) Poner un ejemplo de una aplicación que no sea diferenciable pero tenga derivadas direccionales. T3. (1) Enunciar con matrices jacobianas la regla de la cadena. (2) Sea f una función diferenciable de dos variables y sea h(x, y, z) = f(x 2 y, log(z y 2 )). Calcular los puntos críticos de h. Problema 1. Se considera la función definida para xy 2 y 3 0. Se pide: x4 sen 2 y xy 2 y 3, (1) Calcular su límite para (x, y) (a, 0) con a 0. (2) Mostrar que no tiene límite para (x, y) (a, a). Problema 2. (1) Estudiar la diferenciabilidad de la función según los valores del entero k 3. (2) Cuándo es de clase 1? 0 (x, y) = (0, 0), f : R 2 R : (x, y) x k x 2 + y 2 (x, y) (0, 0), Problema 3. Se considera en R 3 el sistema de ecuaciones x 2 + y 4 = 1, y 4 z = 1, y la función h(x, y, z) = x 2 + y 4 (1 z 2 ) z. Se pide: (1) Estudiar si h tiene extremos locales. (2) Mostrar que el sistema define una curva regular compacta C R 3, cuyos puntos son todos regulares. (3) Encontrar los puntos críticos condicionados de h en C. (4) Estudiar los extremos condicionados de h en C. 8

10 Febrero 2016 T1. Se considera el siguiente conjunto: S = n N (x, y) : x 2 + y 2 = 1 n 2 } R 2. (1) Calcular el interior, la adherencia y la frontera de S. Tiene S algún punto aislado? (2) Es S conexo? Es conexo S ( 0} [0, 1] )? T2. (1) Definir el concepto de aplicación contractiva y enunciar el Teorema del Punto Fijo para aplicaciones contractivas. (2) Sea K R n un conjunto compacto y f : K K una aplicación continua sin puntos fijos. Probar que existe una constante C > 0 tal que para cada x K se tiene x f(x) C. T3. (1) Enunciar el concepto de diferencial de una función en un punto. (2) Enunciar y demostrar el Teorema del Valor Medio. T4. Sea U R n un conjunto abierto y f : U R n una aplicación de clase C 1, y supongamos que para un punto x 0 U se verifica det(jf(x 0 )) 0. Probar que existe r > 0 tal que B(x 0, r) U y f es inyectiva en B(x 0, r). Problema 1. Para k = 1, 2 se define la función xy k sen x y si y 0, 0 si y = 0. Estudiar en todo R 2 según el valor de k (1) la continuidad y (2) la diferenciabilidad de f. Problema 2. Se considera en R 3 la ecuación x + 2z x2 + yz + (z 1) 13 = 2. (1) Probar que en un entorno de (0, 0, 1) la ecuación anterior define a z como función implícita de x e y, que denotamos z = g(x, y), y calcular el polinomio de Taylor de segundo grado de g en (0, 0). (2) Sea G la aplicación definida por G(x, y) = (g(x, y), y). Determinar si G posee inversa diferenciable en un entorno de (0, 0), y en caso afirmativo, calcular la diferencial de esa inversa en G(0, 0). Problema 3. Se considera la curva C R 3 de ecuaciones x + y + z = 3, x 2 y 2 + z 2 = 1. (1) Calcular los puntos críticos condicionados de la función h(x, y, z) = x 2 + y 2 + z 2 en C. (2) Hallar la recta tangente a C en su punto más próximo al origen. 9

1. DIFERENCIABILIDAD EN VARIAS VARIABLES

1. DIFERENCIABILIDAD EN VARIAS VARIABLES 1 1. DIFERENCIABILIDAD EN VARIAS VARIABLES 1.1. DERIVADAS DIRECCIONALES Y PARCIALES Definición 1.1. Sea f : R n R, ā R n y v R n. Se define la derivada direccional de f en ā y en la dirección de v como:

Más detalles

CALCULO DIFERENCIAL. GRUPO D

CALCULO DIFERENCIAL. GRUPO D CALCULO DIFERENCIAL. GRUPO D HOJA DE PROBLEMAS 1 1. En este ejercicio se trata de dibujar el siguiente subconjunto de R 3 llamado hiperboloide de una hoja (a, b, c > 0): } V = (x, y, z) R 3 : x a + y b

Más detalles

COLEGIO UNIVERSITARIO CARDENAL CISNEROS. Libro de Ejercicios de Matemáticas Empresariales II

COLEGIO UNIVERSITARIO CARDENAL CISNEROS. Libro de Ejercicios de Matemáticas Empresariales II COLEGIO UNIVERSITARIO CARDENAL CISNEROS Libro de Ejercicios de Matemáticas Empresariales II Manuel León Navarro 2 Capítulo 1 Ejercicios lección 1 1. Sea el conjunto de las matrices cuadradas de orden 2

Más detalles

Clase 10: Extremos condicionados y multiplicadores de Lagrange

Clase 10: Extremos condicionados y multiplicadores de Lagrange Clase 10: Extremos condicionados y multiplicadores de Lagrange C.J. Vanegas 7 de abril de 008 1. Extremos condicionados y multiplicadores de Lagrange Estamos interesados en maximizar o minimizar una función

Más detalles

DERIVADAS, LÍMITES Y TEOREMAS DE DERIVABILIDAD

DERIVADAS, LÍMITES Y TEOREMAS DE DERIVABILIDAD DERIVADAS, LÍMITES Y TEOREMAS DE DERIVABILIDAD Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o El teorema de Lagrange dice que: f(3)

Más detalles

Cálculo en varias variables

Cálculo en varias variables Cálculo en varias variables Dpto. Matemática Aplicada Universidad de Málaga Resumen Límites y continuidad Funciones de varias variables Límites y continuidad en varias variables 1 Límites y continuidad

Más detalles

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN May 4, 2012 1. Optimización Sin Restricciones En toda esta sección D denota un subconjunto abierto de R n. 1.1. Condiciones Necesarias de Primer Orden. Proposición 1.1. Sea f : D R diferenciable. Si p

Más detalles

1 Cálculo diferencial en varias variables.

1 Cálculo diferencial en varias variables. a t e a PROBLEMAS DE CÁLCULO II t i c a s 1 o Ings. Industrial y de Telecomunicación CURSO 2009 2010 1 Cálculo diferencial en varias variables. 1.1 Funciones de varias variables. Límites y continuidad.

Más detalles

5. El teorema de los multiplicadores de Lagrange.

5. El teorema de los multiplicadores de Lagrange. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 011 1. 5. El teorema de los multiplicadores de Lagrange. gxy= es decir, { } Sea g una función de dos variables suficientemente regular y consideremos la curva C

Más detalles

www.academiacae.com!!info@academiacae.com!!91.501.36.88!!28007!madrid!

www.academiacae.com!!info@academiacae.com!!91.501.36.88!!28007!madrid! CONTINUIDAD Y DERIVABILIDAD. TEOREMAS Y APLICACIONES DE LAS DERIVADAS 1.- junio 1994 Se sabe que y = f (x) e y = g (x) son dos curvas crecientes en x = a. Analícese si la curva y = f(x) g(x) ha de ser,

Más detalles

Matemáticas Febrero 2013 Modelo A

Matemáticas Febrero 2013 Modelo A Matemáticas Febrero 0 Modelo A. Calcular el rango de 0 0 0. 0 a) b) c). Cuál es el cociente de dividir P(x) = x x + 9 entre Q(x) = x +? a) x x + x 6. b) x + x + x + 6. c) x x + 5x 0.. Diga cuál de las

Más detalles

RESUMEN TEORIA MATEMATICAS 5

RESUMEN TEORIA MATEMATICAS 5 RESUMEN TEORIA MATEMATICAS 5 LIMITES Definición. Sea :, lim,,, Significa que cuando, esta cerca de, entonces, esta cerca de L. De otra forma se dice que, pertenece a una bola centrada en, por otro lado,

Más detalles

Funciones de Clase C 1

Funciones de Clase C 1 Capítulo 7 Funciones de Clase C 1 Vamos a considerar ahora la extensión a varias variables del concepto de función de clase C 1. Cada vez que establezcamos una propiedad de las funciones diferenciables,

Más detalles

2. Continuidad y derivabilidad. Aplicaciones

2. Continuidad y derivabilidad. Aplicaciones Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 7 2. Continuidad y derivabilidad. Aplicaciones Límite de una función en un punto Sea una función f(x) definida en el entorno de un punto

Más detalles

Derivadas Parciales y Derivadas Direccionales

Derivadas Parciales y Derivadas Direccionales Tema 3 Derivadas Parciales y Derivadas Direccionales En este tema y en el siguiente presentaremos los conceptos fundamentales del Cálculo Diferencial para funciones de varias variables. Comenzaremos con

Más detalles

Ejercicios Resueltos de Derivadas y sus aplicaciones:

Ejercicios Resueltos de Derivadas y sus aplicaciones: Ejercicios Resueltos de Derivadas y sus aplicaciones: 1.- Sea la curva paramétrica definida por, con. a) Halle. b) Para qué valor(es) de, la curva tiene recta tangente vertical? 2.- Halle para : a) b)

Más detalles

TEMA 4: DERIVADAS. En símbolos, la pendiente de la curva en P = lim Q P (pendiente de P Q).

TEMA 4: DERIVADAS. En símbolos, la pendiente de la curva en P = lim Q P (pendiente de P Q). TEMA 4: DERIVADAS 1. La derivada de una función. Reglas de derivación 1.1. La pendiente de una curva. La pendiente de una curva en un punto P es una medida de la inclinación de la curva en ese punto. Si

Más detalles

Problema 1 (i) Probar que el sistema. y 2 + z 2 x 2 + 2 = 0 yz + xz xy 1 = 0,

Problema 1 (i) Probar que el sistema. y 2 + z 2 x 2 + 2 = 0 yz + xz xy 1 = 0, Capítulo 1 Función implícita Problema 1 (i Probar que el sistema y + z x + 0 yz + xz xy 1 0 dene dos funciones implícitas y y(x z z(x en un entorno del punto (x y z ( 1 1. (ii Sea α la curva parametrizada

Más detalles

Luego, en el punto crítico

Luego, en el punto crítico Matemáticas Grado en Química Ejercicios propuestos Tema 5 Problema 1. Obtenga y clasique los puntos críticos de las siguientes funciones: a fx, y = x +y, b fx, y = x y, c fx, y = x 3 + y. Solución del

Más detalles

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos.

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. CAPÍTULO IV. CONTINUIDAD DE FUNCIONES SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. 121 A. DEFINICIÓN DE FUNCIÓN CONTINUA. Una función

Más detalles

Resumen Tema 3: Derivadas. Concepto. Propiedades. Cálculo de derivadas. Aplicaciones.

Resumen Tema 3: Derivadas. Concepto. Propiedades. Cálculo de derivadas. Aplicaciones. Resumen Tema 3: Derivadas. Concepto. Propiedades. Cálculo de derivadas. Aplicaciones. 0.. Concepto de derivada. Definición. Sea f : S R R, a (b, c) S. Decimos que f es derivable en a si existe: f(x) f(a)

Más detalles

CÁLCULO DE PRIMITIVAS Y ÁREAS POR INTEGRALES

CÁLCULO DE PRIMITIVAS Y ÁREAS POR INTEGRALES CÁLCULO DE PRIMITIVAS Y ÁREAS POR INTEGRALES RELACIÓN DE PROBLEMAS DE SELECTIVIDAD º DE BACHILLERATO CIENCIAS DEPARTAMENTO DE MATEMÁTICAS COLEGIO MARAVILLAS TERESA GONZÁLEZ GÓMEZ .-Hallar una primitiva

Más detalles

Polinomios. 1.- Funciones cuadráticas

Polinomios. 1.- Funciones cuadráticas Polinomios 1.- Funciones cuadráticas Definición 1 (Función polinomial) Sea n un entero no negativo y sean a n, a n 1,..., a, a 1, a 0 número s reales con a n 0. La función se denomina función polinomial

Más detalles

Tema 06: Derivación implícita, vector gradiente y derivadas direccionales

Tema 06: Derivación implícita, vector gradiente y derivadas direccionales Tema 06: Derivación implícita, vector gradiente y derivadas direccionales Juan Ignacio Del Valle Gamboa Sede de Guanacaste Universidad de Costa Rica Ciclo I - 2014 MA-1003 Cálculo III (UCR) Derivadas implícitas

Más detalles

FUNCIONES CONTINUAS EN UN INTERVALO. El Tª de Bolzano es útil para determinar en algunas ocasiones si una ecuación tiene soluciones reales:

FUNCIONES CONTINUAS EN UN INTERVALO. El Tª de Bolzano es útil para determinar en algunas ocasiones si una ecuación tiene soluciones reales: FUNCIONES CONTINUAS EN UN INTERVALO Teoremas de continuidad y derivabilidad Teorema de Bolzano Sea una función que verifica las siguientes hipótesis:. Es continua en el intervalo cerrado [, ]. Las imágenes

Más detalles

1. Teorema Fundamental del Cálculo

1. Teorema Fundamental del Cálculo 1. Teorema Fundamental del Cálculo Vamos a considerar dos clases de funciones, definidas como es de otras funciones Funciones es. F (t) = t a f(x)dx donde f : R R, y F (t) = f(x, t)dx A donde f : R n R

Más detalles

Funciones de varias variables: problemas resueltos

Funciones de varias variables: problemas resueltos Funciones de varias variables: problemas resueltos BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhabreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimenez@ull.es) M. ISABEL MARRERO RODRÍGUEZ

Más detalles

TRABAJO EN GRUPO 04/2009 Permutación 1 Ingeniería Técnica de Obras Públicas (E.T.S.E.C.C.P.B.)

TRABAJO EN GRUPO 04/2009 Permutación 1 Ingeniería Técnica de Obras Públicas (E.T.S.E.C.C.P.B.) TRABAJO EN GRUPO 04/2009 Permutación 1 Ingeniería Técnica de Obras Públicas (E.T.S.E.C.C.P.B.) Problema 1 (i) Probar que el sistema { ln(x 2 + y 2 + 1) + z 2 = π sen(z 2 ) (x 2 + y 2 ) 3 2 + xz = 0, dene

Más detalles

Tema 1. Cálculo diferencial

Tema 1. Cálculo diferencial Tema 1. Cálculo diferencial 1 / 57 Una función es una herramienta mediante la que expresamos la relación entre una causa (variable independiente) y un efecto (variable dependiente). Las funciones nos permiten

Más detalles

x = 0, la recta tangente a la gráfica de f (x)

x = 0, la recta tangente a la gráfica de f (x) CÁLCULO DIFERENCIAL JUNIO 004 1. Sea la función e y = estúdiese su monotonía, etremos relativos y asíntotas. (Solución: Es derivable en todos los puntos ecepto en =0. Creciente si < 0. No tiene asíntotas

Más detalles

1. Usando la definición correspondiente demostrar que la función. z = f(x, y) = 3x xy 2

1. Usando la definición correspondiente demostrar que la función. z = f(x, y) = 3x xy 2 1. Usando la definición correspondiente demostrar que la función es diferenciable en todo R 2. z = f(x, y = 3x xy 2 Se debe verificar que para todo (a, b en R 2, existen funciones, de = x y k = y, ɛ 1

Más detalles

DERIVADAS PARCIALES Y APLICACIONES

DERIVADAS PARCIALES Y APLICACIONES CAPITULO IV CALCULO II 4.1 DEFINICIÓN DERIVADAS PARCIALES Y APLICACIONES En cálculo una derivada parcial de una función de diversas variables es su derivada respecto a una de esas variables con las otras

Más detalles

TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE

TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE PROBLEMAS RESUELTOS + Dada F() =, escriba la ecuación de la secante a F que une los puntos (, F( )) y 4 (, F()). Eiste un punto c en el intervalo [, ]

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grado en Química Bloque Funciones de una variable Sección.5: Aplicaciones de la derivada. Máximos y mínimos (absolutos) de una función. Sea f una función definida en un conjunto I que contiene un punto

Más detalles

4. " $#%&' (#) para todo $#* (desigualdad triangular).

4.  $#%&' (#) para todo $#* (desigualdad triangular). 10 Capítulo 2 Espacios Métricos 21 Distancias y espacios métricos Definición 211 (Distancia) Dado un conjunto, una distancia es una aplicación que a cada par le asocia un número real y que cumple los siguientes

Más detalles

EJERCICIOS PAU MAT II CC SOC. ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com.

EJERCICIOS PAU MAT II CC SOC. ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com. FUNCIONES 1- a) Dada la función:, Definida para 0, 0, encontrar el punto (x,y) que maximiza f sujeto a la restricción x+y=36. b) Calcular: Aragón 2014 Opción A Junio 2- Dada la función: Calcular: a) Dominio

Más detalles

PROBLEMAS DE CONTINUIDAD Y DERIVABILIDAD

PROBLEMAS DE CONTINUIDAD Y DERIVABILIDAD PROBLEMAS DE CONTINUIDAD Y DERIVABILIDAD Considera la función f(x)= x 3 + px donde p es un número real. Escribir (en función de p) la ecuación de la recta tangente a la grafica f(x) en el punto de abscisa

Más detalles

Funciones de varias variables.

Funciones de varias variables. Funciones de varias variables. Definición. Hasta ahora se han estudiado funciones de la forma y = f (x), f :D Estas funciones recibían el nombre de funciones reales de variable real ya que su valor y dependía

Más detalles

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES 1. Sea f : (0, + ) definida como f () = Ln a) Probar que la función derivada f es decreciente en todo su dominio. b) Determinar los intervalos de crecimiento

Más detalles

Resumen de Análisis Matemático IV

Resumen de Análisis Matemático IV Resumen de Análisis Matemático IV 1. Funciones inversas e implícitas y extremos condicionados 1.1. Teorema de la función inversa Teorema de la función inversa: Sea A abierto de R n, f : A R n tal que f

Más detalles

9. Aplicaciones al cálculo de integrales impropias.

9. Aplicaciones al cálculo de integrales impropias. Funciones de variable compleja. Eleonora Catsigeras. 8 Mayo 26. 85 9. Aplicaciones al cálculo de integrales impropias. Las aplicaciones de la teoría de Cauchy de funciones analíticas para el cálculo de

Más detalles

Problema 1. Calcula las derivadas parciales de las siguientes funciones: (d) f(x, y) = arctan x + y. (e) f(x, y) = cos(3x) sin(3y),

Problema 1. Calcula las derivadas parciales de las siguientes funciones: (d) f(x, y) = arctan x + y. (e) f(x, y) = cos(3x) sin(3y), Problema. Calcula las derivadas parciales de las siguientes funciones: (a) f(x, y) = x + y cos(xy), (b) f(x, y) = x x + y, (c) f(x, y) = log x + y x y, (d) f(x, y) = arctan x + y x y, (e) f(x, y) = cos(3x)

Más detalles

En este capítulo obtendremos los resultados básicos del cálculo diferencial para funciones reales definidas sobre R o sobre intervalos.

En este capítulo obtendremos los resultados básicos del cálculo diferencial para funciones reales definidas sobre R o sobre intervalos. Capítulo 6 Derivadas 61 Introducción En este capítulo obtendremos los resultados básicos del cálculo diferencial para funciones reales definidas sobre R o sobre intervalos Definición 61 Sea I R, I, f :

Más detalles

Reglas de derivación. 4.1. Sumas, productos y cocientes. Tema 4

Reglas de derivación. 4.1. Sumas, productos y cocientes. Tema 4 Tema 4 Reglas de derivación Aclarado el concepto de derivada, pasamos a desarrollar las reglas básicas para el cálculo de derivadas o, lo que viene a ser lo mismo, a analizar la estabilidad de las funciones

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES )

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS SOLUCIONES HOJA 5: Optimización 5-1. Hallar los puntos críticos de las siguiente funciones y clasificarlos: a fx, y = x y + xy.

Más detalles

CAPÍTULO 4: DERIVADAS DE ORDEN SUPERIOR. En este capítulo D denota un subconjunto abierto de R n.

CAPÍTULO 4: DERIVADAS DE ORDEN SUPERIOR. En este capítulo D denota un subconjunto abierto de R n. April 15, 2009 En este capítulo D denota un subconjunto abierto de R n. 1. Introducción Definición 1.1. Dada una aplicación f : D R, definimos la derivada parcial segunda de f como D ij f = 2 f = ( ) x

Más detalles

MATEMATICAS ESPECIALES I PRACTICA 7 CLASE 1. Transformaciones conformes

MATEMATICAS ESPECIALES I PRACTICA 7 CLASE 1. Transformaciones conformes MATEMATICAS ESPECIALES I PRACTICA 7 CLASE 1 Transformaciones conformes 1 Determinar donde son conformes las siguientes transformaciones: (a) w() = 2 + 2 (b) w() = 1 + i (c) w() = + 1 (d) w() = En cada

Más detalles

Tema 10 Aplicaciones de la derivada Matemáticas II 2º Bachillerato 1. ( x) 2x x. Hay dos puntos: (1, 2) y (1, 2)

Tema 10 Aplicaciones de la derivada Matemáticas II 2º Bachillerato 1. ( x) 2x x. Hay dos puntos: (1, 2) y (1, 2) Tema 0 Aplicaciones de la derivada Matemáticas II º Bachillerato TEMA 0 APLICACIONES DE LA DERIVADA RECTA TANGENTE Escribe e 0 EJERCICIO : la ecuación de la recta tangente a la curva f en 0. Ordenada del

Más detalles

Funciones de varias variables

Funciones de varias variables Funciones de varias variables F. Alvarez y H. Lugo Universidad Complutense de Madrid 23 Noviembre, 2011 Campo escalar Denominamos campo escalar a una función f : R n R, es decir, una función cuyo dominio

Más detalles

Espacio de Funciones Medibles

Espacio de Funciones Medibles Capítulo 22 Espacio de Funciones Medibles Igual que la σ-álgebra de los conjuntos medibles, la familia de funciones medibles, además de contener a todas las funciones razonables (por supuesto son medibles

Más detalles

TEMA 2: DERIVADA DE UNA FUNCIÓN

TEMA 2: DERIVADA DE UNA FUNCIÓN TEMA : DERIVADA DE UNA FUNCIÓN Tasa de variación Dada una función y = f(x), se define la tasa de variación en el intervalo [a, a +h] como: f(a + h) f(a) f(a+h) f(a) y se define la tasa de variación media

Más detalles

ANALISIS MATEMATICO II Grupo Ciencias 2015

ANALISIS MATEMATICO II Grupo Ciencias 2015 ANALISIS MATEMATICO II Grupo Ciencias 05 Práctica : Geometría Analítica: Vectores, Rectas y Planos A. Vectores Hasta el 9 de marzo. Sean v = (0,, ) y w = (,, 4) dos vectores de IR 3. (a) Obtener el coseno

Más detalles

DERIVABILIDAD. 1+x 2. para x [1, 3]

DERIVABILIDAD. 1+x 2. para x [1, 3] 1 DERIVABILIDAD 1. Definir derivada y derivadas laterales de una función en un punto. Probar que la función f es derivable en =1 y que la derivada lateral por la derecha en =0 es infinito. para [0, 1)

Más detalles

Derivadas Parciales (parte 2)

Derivadas Parciales (parte 2) 40 Derivadas Parciales (parte 2) Ejercicio: Si donde y. Determinar Solución: Consideraremos ahora la situación en la que, pero cada una de las variables e es función de dos variables y. En este caso tiene

Más detalles

Práctica 2 - Hay diferentes infinitos?- A. Propiedades básicas de los Conjuntos

Práctica 2 - Hay diferentes infinitos?- A. Propiedades básicas de los Conjuntos Cálculo Avanzado Primer Cuatrimestre de 2011 Práctica 2 - Hay diferentes infinitos?- Llamaremos número cardinal de M al concepto general que, por medio de nuestra activa capacidad de pensar, surge del

Más detalles

Aplicaciones de las Derivadas

Aplicaciones de las Derivadas Tema 4 Aplicaciones de las Derivadas 4.1 Introducción Repasaremos en este Tema algunas de las aplicaciones fundamentales de las derivadas. Muchas de ellas son ya conocidas por tratarse de conceptos explicados

Más detalles

1. Determinar las ecuaciones paramétricas y la ecuación continua de las rectas que pasan por el punto A y con el vector de dirección dado:

1. Determinar las ecuaciones paramétricas y la ecuación continua de las rectas que pasan por el punto A y con el vector de dirección dado: CAPÍTULO. GEOMETRÍA AFÍN.. Problemas. Determinar las ecuaciones paramétricas y la ecuación continua de las rectas que pasan por el punto A y con el vector de dirección dado: a) A(,, ), v = (,, ) ; b) A(0,

Más detalles

50 CAP. I. CONJUNTOS, APLICACIONES Y RELACIONES. Ejercicio. 8.1. Dados los conjuntos: Determinar los siguientes conjuntos: Se tiene:

50 CAP. I. CONJUNTOS, APLICACIONES Y RELACIONES. Ejercicio. 8.1. Dados los conjuntos: Determinar los siguientes conjuntos: Se tiene: 50 CAP. I. CONJUNTOS, APLICACIONES Y RELACIONES Ejercicio. 8.1. Dados los conjuntos: Determinar los siguientes conjuntos: A = {a, b, c, d, e}, B = {e, f, g, h}, C = {a, e, i, o, u} A B C, A B C, A \ B,

Más detalles

EJERCICIOS DE CÁLCULO DIFERENCIAL EN VARIAS VARIABLES

EJERCICIOS DE CÁLCULO DIFERENCIAL EN VARIAS VARIABLES UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA LABORATORIO DE FORMAS EN GRUPOS EJERCICIOS DE CÁLCULO DIFERENCIAL EN VARIAS VARIABLES Ramón Bruzual Marisela Domínguez Caracas,

Más detalles

Universidad de Jaén Departamento de Matemáticas Ingeniería Técnica en Informática de Gestión.

Universidad de Jaén Departamento de Matemáticas Ingeniería Técnica en Informática de Gestión. Universidad de Jaén Departamento de Matemáticas Ingeniería Técnica en Informática de Gestión. Algebra I I Relación de problemas 3. Espacios vectoriales. 1.-Estudiar si los siguientes conjuntos forman o

Más detalles

Introducción al Cálculo. Diferencial en Varias Variables

Introducción al Cálculo. Diferencial en Varias Variables UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA LABORATORIO DE FORMAS EN GRUPOS Introducción al Cálculo Diferencial en Varias Variables Ramón Bruzual Marisela Domínguez Caracas,

Más detalles

El espacio n Consideremos el conjunto de todas las n adas ordenadas de números reales, denotado por n : 8. 1(x 1, x 2,, x n ) = (x 1, x 2,, x n )

El espacio n Consideremos el conjunto de todas las n adas ordenadas de números reales, denotado por n : 8. 1(x 1, x 2,, x n ) = (x 1, x 2,, x n ) El espacio n Consideremos el conjunto de todas las n adas ordenadas de números reales, denotado por n : n = {(x 1,x,, x n ) / x 1,x,, x n } A cada uno de los números reales x 1,x,, x n que conforman la

Más detalles

Cálculo Diferencial - Parcial No. 2

Cálculo Diferencial - Parcial No. 2 Cálculo Diferencial - Parcial No. 2 Departamento de Matemáticas - Universidad de los Andes Marzo 18 de 2010 Juro solemnemente abstenerme de copiar o de incurrir en actos que puedan conducir a la trampa

Más detalles

Cálculo II. Tijani Pakhrou

Cálculo II. Tijani Pakhrou Cálculo II Tijani Pakhrou Índice general 1. Nociones topológicas en R n 1 1.1. Distancia y norma euclídea en R n.................... 1 1.2. Bolas abiertas y cerradas en R n..................... 3 1.3.

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grado en Química Bloque Funciones de una variable Sección.7: Aproximación de funciones. Desarrollo de Taylor. Aproximación lineal. La aproximación lineal de una función y = f(x) en un punto x = a es la

Más detalles

Complementos de Matemáticas, ITT Telemática

Complementos de Matemáticas, ITT Telemática Introducción Métodos de punto fijo Complementos de Matemáticas, ITT Telemática Tema 1. Solución numérica de ecuaciones no lineales Departamento de Matemáticas, Universidad de Alcalá Introducción Métodos

Más detalles

TEMA 3: CÁLCULO DE FUNCIONES DE VARIAS VARIABLES

TEMA 3: CÁLCULO DE FUNCIONES DE VARIAS VARIABLES TEMA : CÁLCULO DE FUNCIONES DE AIAS AIABLES. Hallar f,. f, f,. 4 4. Hallar el valor de la función f, en los puntos de la circunferencia.. Calcular los guientes límites: cos lim,, sen lim,, c, lim con,

Más detalles

Función diferenciable Regla de la cadena (2 variables) Regla de la cadena (vectorial) Diferenciabilidad

Función diferenciable Regla de la cadena (2 variables) Regla de la cadena (vectorial) Diferenciabilidad Diferenciabilidad 1 Función diferenciable 2 Regla de la cadena (2 variables) 3 Regla de la cadena (vectorial) OBJETIVO Generalizar el concepto de diferenciabilidad (conocido ya para funciones de una variable)

Más detalles

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos Tema 3: Repaso de Álgebra Lineal Parte I Virginia Mazzone Contenidos Vectores y Matrices Bases y Ortonormailizaciòn Norma de Vectores Ecuaciones Lineales Algenraicas Ejercicios Vectores y Matrices Los

Más detalles

cuadrada de 3 filas y tres columnas cuyo determinante vale 2.

cuadrada de 3 filas y tres columnas cuyo determinante vale 2. PROBLEMAS DE SELECTIVIDAD. BLOQUE ÁLGEBRA MATEMÁTICAS II 0 2 0. Se dan las matrices A, I y M, donde M es una matriz de dos 3 0 filas y dos columnas que verifica M 2 = M. Obtener razonadamente: a) Todos

Más detalles

f (x) (1+[f (x)] 2 ) 3 2 κ(x) =

f (x) (1+[f (x)] 2 ) 3 2 κ(x) = MATEMÁTICAS II - EXAMEN PRIMER PARCIAL - 4/11/11 Grado: Ing. Electrónica Rob. y Mec. Ing. Energía Ing. Organización Ind. Nombre y Apellidos: Ejercicio 1. La curvatura de una función f en un punto x viene

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Enunciados) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Enunciados) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Enunciados) Isaac Musat Hervás 28 de septiembre de 2016 2 Índice general 1. Año 2000 7 1.1. Modelo 2000 - Opción A.....................

Más detalles

Diferenciabilidad de funciones de R n en R m

Diferenciabilidad de funciones de R n en R m Diferenciabilidad de funciones de R n en R m Cálculo II (2003) En este capítulo generalizamos la noción de diferenciabilidad para funciones vectoriales de variable vectorial, que también llamamos aplicaciones.

Más detalles

Continuidad. 5.1 Continuidad en un punto

Continuidad. 5.1 Continuidad en un punto Capítulo 5 Continuidad 5.1 Continuidad en un punto Definición 5.1.1 (Aplicación continua en un punto). Sean (X, τ) e (Y, τ ) dos espacios topológicos, y sea f : X Y una aplicación entre ellos. Diremos

Más detalles

Números complejos (lista de problemas para examen)

Números complejos (lista de problemas para examen) Números complejos (lista de problemas para examen) En esta lista de problemas trabajamos con la construcción de números complejos (como pares ordenados de los reales) y con su representación en la forma

Más detalles

Cálculo Diferencial en una variable

Cálculo Diferencial en una variable Tema 2 Cálculo Diferencial en una variable 2.1. Derivadas La derivada nos proporciona una manera de calcular la tasa de cambio de una función Calculamos la velocidad media como la razón entre la distancia

Más detalles

SELECTIVIDAD. Exámenes de PAU de Matemáticas II de la Comunidad de Madrid.

SELECTIVIDAD. Exámenes de PAU de Matemáticas II de la Comunidad de Madrid. SELECTIVIDAD Exámenes de PAU de Matemáticas II de la Comunidad de Madrid. Contenido del fichero: Modelos de examen y pruebas de las convocatorias de junio y septiembre desde el curso 2001-2002 hasta 2012-2013.

Más detalles

Cap. 1 Funciones de Varias variables. Moisés Villena Muñoz

Cap. 1 Funciones de Varias variables. Moisés Villena Muñoz Cap. Funciones de Varias variables. Definición de Funciones de dos variables. Dominio. Grafica..4 Curvas de nivel. Derivadas Parciales.6 Funciones Homogéneas.7 Funciones Nomotéticas.8 Diferencial Total.9

Más detalles

Curso Propedéutico de Cálculo Sesión 2: Límites y Continuidad

Curso Propedéutico de Cálculo Sesión 2: Límites y Continuidad y Laterales Curso Propedéutico de Cálculo Sesión 2: y Joaquín Ortega Sánchez Centro de Investigación en Matemáticas, CIMAT Guanajuato, Gto., Mexico y Esquema Laterales 1 Laterales 2 y Esquema Laterales

Más detalles

VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL

VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL (Curso 00-00) HOJA Ejercicio. Determina en qué recintos es holomorfa la siguiente función: f(x + iy) x + ay + i(bx + cy) En este caso consideramos: u(x, y) x + ay

Más detalles

x 2 + 1, si x 0 1 x 2 si x < 0 e x, si x > 0 x si 0 x < 2 f(x) = x + 2 si 2 x < 3 2x 1 si 3 x < 4 tgx, 0 < x < π/4

x 2 + 1, si x 0 1 x 2 si x < 0 e x, si x > 0 x si 0 x < 2 f(x) = x + 2 si 2 x < 3 2x 1 si 3 x < 4 tgx, 0 < x < π/4 CÁLCULO. Curso 2003-2004. Tema 7. Derivabilidad.. Estudiar la continuidad y la derivabilidad de las funciones: {, si 0 (a) e, si > 0 2 +, si > 0 (b), si = 0 2. Dada la función (c) 2 si < 0 e, si > 0 2

Más detalles

EXAMEN DE SEPTIEMBRE, MATEMÁTICAS I. 1. (2.5 ptos) Sean f y g funciones con derivadas primeras y segundas continuas de las que se sabe que

EXAMEN DE SEPTIEMBRE, MATEMÁTICAS I. 1. (2.5 ptos) Sean f y g funciones con derivadas primeras y segundas continuas de las que se sabe que EXAMEN DE SEPTIEMBRE, MATEMÁTICAS I DEBE CONTESTAR ÚNICAMENTE A 4 DE LOS SIGUIENTES 5 EJERCICIOS 1. (.5 ptos) Sean f y g funciones con derivadas primeras y segundas continuas de las que se sabe que Sea

Más detalles

GEOMETRIA ANALITICA- GUIA DE EJERCICIOS DE LA RECTA Y CIRCUNFERENCIA PROF. ANNA LUQUE

GEOMETRIA ANALITICA- GUIA DE EJERCICIOS DE LA RECTA Y CIRCUNFERENCIA PROF. ANNA LUQUE Ejercicios resueltos de la Recta 1. Hallar la ecuación de la recta que pasa por el punto (4. - 1) y tiene un ángulo de inclinación de 135º. SOLUCION: Graficamos La ecuación de la recta se busca por medio

Más detalles

Funciones de Una Variable Real I. Derivadas

Funciones de Una Variable Real I. Derivadas Contents : Derivadas Universidad de Murcia Curso 2010-2011 Contents 1 Funciones derivables Contents 1 Funciones derivables 2 Contents 1 Funciones derivables 2 3 Objetivos Funciones derivables Definir,

Más detalles

UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD = 3 2

UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD = 3 2 UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD 1.- Límites en el Infinito: lim x + f(x) = L Se dice que el límite de f (x) cuando x tiende a + es L ϵ Ɽ, si podemos hacer que f(x) se aproxime a L tanto como

Más detalles

que corresponde al dominio definido por el paralelogramo de vértices (0, 2), (2, 1), (1, 6) y (3, 5).

que corresponde al dominio definido por el paralelogramo de vértices (0, 2), (2, 1), (1, 6) y (3, 5). 74 MÉTOOS NUMÉRICOS Informática de Sistemas - curso 9/1 Hojas de problemas Tema I - Cálculo diferencial e integral en varias variables I.1 Representación de funciones de dos variables 1. ibuja el plano

Más detalles

Ejercicios Resueltos de Cálculo III.

Ejercicios Resueltos de Cálculo III. Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como

Más detalles

ƒ : {(1, 4), (2, 5), (3, 6), (4, 7)}.

ƒ : {(1, 4), (2, 5), (3, 6), (4, 7)}. SECCIÓN 5. Funciones inversas 5. Funciones inversas Verificar que una función es la inversa de otra. Determinar si una función tiene una función inversa. Encontrar la derivada de una función inversa. f

Más detalles

Tema 2. Grupos. 3. El conjunto de matrices de orden 2 con coeficientes enteros (o reales) con la suma es un grupo conmutativo.

Tema 2. Grupos. 3. El conjunto de matrices de orden 2 con coeficientes enteros (o reales) con la suma es un grupo conmutativo. Tema 2. Grupos. 1 Grupos Definición 1 Un grupo es una estructura algebraica (G, ) tal que la operación binaria verifica: 1. * es asociativa 2. * tiene elemento neutro 3. todo elemento de G tiene simétrico.

Más detalles

Funciones Exponenciales y Logarítmicas

Funciones Exponenciales y Logarítmicas Funciones Exponenciales y Logarítmicas 0.1 Funciones exponenciales Comencemos por analizar la función f definida por f(x) = x. Enumerando coordenadas de varios puntos racionales, esto es de la forma m,

Más detalles

5. INTEGRALES MULTIPLES

5. INTEGRALES MULTIPLES 5. INTEGRALES MULTIPLES INDICE 5 5.. Integrales iteradas. 5.. Definición de integral doble: áreas y volúmenes..3 5.3. Integral doble en coordenadas polares 5 5.4. Aplicaciones de la integral doble (geométricas

Más detalles

Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o

Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o DERIVADAS Y TEOREMAS DE DERIVABILIDAD Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o El teorema de Lagrange dice que: f(3) - f(-1) =

Más detalles

P. A. U. LAS PALMAS 2005

P. A. U. LAS PALMAS 2005 P. A. U. LAS PALMAS 2005 OPCIÓN A: J U N I O 2005 1. Hallar el área encerrada por la gráfica de la función f(x) = x 3 4x 2 + 5x 2 y la rectas y = 0, x = 1 y x = 3. x 3 4x 2 + 5x 2 es una función polinómica

Más detalles

Cardinalidad. Teorema 0.3 Todo conjunto infinito contiene un subconjunto infinito numerable.

Cardinalidad. Teorema 0.3 Todo conjunto infinito contiene un subconjunto infinito numerable. Cardinalidad Dados dos conjuntos A y B, decimos que A es equivalente a B, o que A y B tienen la misma potencia, y lo notamos A B, si existe una biyección de A en B Es fácil probar que es una relación de

Más detalles

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales.

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Unidad V Aplicaciones de la derivada 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Una tangente a una curva es una recta que toca la curva en un solo punto y tiene la misma

Más detalles

Tabla de Derivadas. Función Derivada Función Derivada. f (x) n+1. f (x) y = f (x) y = ln x. y = cotg f (x) y = ( 1 cotg 2 f (x)) f (x) = f (x)

Tabla de Derivadas. Función Derivada Función Derivada. f (x) n+1. f (x) y = f (x) y = ln x. y = cotg f (x) y = ( 1 cotg 2 f (x)) f (x) = f (x) Matemáticas aplicadas a las CCSS - Derivadas Tabla de Derivadas Función Derivada Función Derivada y k y 0 y y y y y f ) y f ) f ) y n y n n y f ) n y n f ) n f ) y y n y y f ) y n n+ y f ) n y f ) f )

Más detalles

TEMA 11. Autovalores y autovectores. Diagonalización y formas canónicas.

TEMA 11. Autovalores y autovectores. Diagonalización y formas canónicas. TEMA 11 F MATEMÁTICOS TEMA 11 Autovalores y autovectores Diagonalización y formas canónicas 1 Introducción Definición 1 (Matrices semejantes) Sean A y B dos matrices cuadradas de orden n Decimos que A

Más detalles

1 Curvas planas. Solución de los ejercicios propuestos.

1 Curvas planas. Solución de los ejercicios propuestos. 1 Curvas planas. Solución de los ejercicios propuestos. 1. Se considera el lugar geométrico de los puntos del plano tales que la suma del cuadrado de las distancias a los puntos P 1 = (, 0) y P = (, 0)

Más detalles

1. Sea f una función definida en I = [1, 2] [1, 4] del siguiente modo: (x + y) 2, x y 2x, 0, en el resto.

1. Sea f una función definida en I = [1, 2] [1, 4] del siguiente modo: (x + y) 2, x y 2x, 0, en el resto. La integral múltiple Problemas resueltos. Sea f una función definida en I [, ] [, 4] del siguiente modo: { (x + y), x y x, f(x, y), en el resto. Indique, mediante un dibujo, la porción A del rectángulo

Más detalles

Lección 2: Funciones vectoriales: límite y. continuidad. Diferenciabilidad de campos

Lección 2: Funciones vectoriales: límite y. continuidad. Diferenciabilidad de campos Lección 2: Funciones vectoriales: límite y continuidad. Diferenciabilidad de campos vectoriales 1.1 Introducción En economía, frecuentemente, nos interesa explicar la variación de unas magnitudes respecto

Más detalles
Sitemap