bloques SC Suma de Cuadrados k trat bloques


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "bloques SC Suma de Cuadrados k trat bloques"

Transcripción

1 Análisis de un diseño en bloques aleatorios Cuando sólo hay dos tratamientos, el análisis de varianza de una vía equivale al test t de Student para muestras independientes. A su vez, el análisis de varianza para el diseño en bloques con dos tratamientos, equivale a la dócima de t de Student para muestras pareadas. Como ya se vio anteriormente, cuando se comparan más de dos pares de tratamientos, la dócima de t de Student no conserva el nivel de significación correspondiente y es más correcto utilizar el análisis de varianza. El diseño en bloques aleatorios es apropiado y eficiente cuando se desea investigar las diferencias entre los promedios de k tratamientos en condiciones homogéneas, vale decir, eliminando las diferencias iniciales entre las unidades experimentales. Estas condiciones homogéneas pueden ser: parcelas de terreno, lotes de producción, camadas de ratones, o una misma persona sometida a diferentes tratamientos. Se supone que la variabilidad de las unidades experimentales entre parcelas, lotes, camadas o personas, es mayor que dentro de esos bloques. Por tanto, al adjudicar los k tratamientos aleatoriamente a las unidades que constituyen un bloque, se obtiene un efecto de tratamiento limpio de esa variación entre bloques que podría llegar a encubrir la diferencia entre tratamientos. Comparando con el diseño completamente aleatorio, se tiene por tanto una fuente de variación adicional a las entre tratamientos y dentro de tratamientos : la variación entre bloques. La suma de cuadrados correspondiente se simbolizará por SCB. Los grados de libertad para el cálculo de CMB serán: b, el número de bloques menos. La SCB se calcula usando los valores de las sumas de los y ij pertenecientes a cada uno de los bloques: y la tabla de ANOVA será: SCB = k bloques ( y b Fuente de variación Gl Grados de libertad Entre tratamientos SC Cuadrados k SCE = b ( y tr k trat CM Cuadrados Medios SCE k Bloques Residual ( k )( b ) b SCB = k ( y ) bl y bloques SCB b SCR ( k )( b ) Total n SCT = ( y i Nota: la suma de cuadrados entre tratamientos es la misma (escrita de otra manera) para el ANOVA de una vía. Lo que cambia es lo que llamamos suma de cuadrados dentro de tratamientos que ahora se dividió entre las SC de Bloques y la SC Residual. Ejemplo: Se tienen tres especies de cítricos a los cuales se mide la razón entre el área de las hojas y el peso seco, bajo 3 condiciones de sombra (sol, semisombra y sombra). Datos provenientes de Snedecor, Cochran (989) Statistical Methods, 8 th Ed. Iowa State Press. Página 56. Adaptado de Capítulo 9 de Taucher (997) Bioestadística, Ed. Universitaria. n i=

2 Especie Sombra Naranja Shamouti Pomelo Marsh Mandarina Clementine Sol 90 3 Semisombra Sombra En este problema no interesa determinar si hay diferencias entre las condiciones de sombra (bloques), supuesto para haber decidido este diseño, sino que interesa analizar si las tres especies difieren en sus resultados. Para el análisis usamos SPSS (Instrucciones: Analizar - Modelo Lineal General - Univariante - Modelo - Personalizado - Efectos Principales - Tipo III y no incluir la intersección en el modelo). La tabla de análisis de varianza es entonces: Pruebas de los efectos inter-sujetos Variable dependiente: RAZON Fuente cuadrados tipo III gl cuadrática F Significación Modelo a TRATAMIE BLOQUES Error Total a. R cuadrado =.999 (R cuadrado corregida =.997) En la prueba de significación, como se dijo más arriba, sólo interesa investigar la diferencia entre tratamientos. Luego, las hipótesis son: H : µ = µ = µ H 0 3 : al menosdosmediasnoson iguales. Esto hace que la F de interés sea la F de los tratamientos, F observado de 9,536 con un valor p de 0,009. Por tanto se rechaza la hipótesis de nulidad y se acepta que hay al menos dos tratamientos (especies) que difieren significativamente en sus efectos (razón). Para saber cuáles de las diferencias observadas entre los promedios de los tratamientos son significativas se pueden emplear los mismos métodos de comparación para medias presentados para el diseño completamente aleatorio. Para saber si en este caso, fue más eficiente el diseño en bloques que un diseño completamente aleatorio, analizaremos la conclusión a la que se habría llegado con este último. Sólo necesitamos eliminar los bloques como fuente de variación.

3 ANOVA RAZON Inter-grupos Intra-grupos Total cuadrados gl cuadrática F Sig Notar primero que la suma de cuadrados de los tratamientos es exactamente igual a la anterior..lo que cambia es que la suma de cuadrados de los bloques está incluida en la suma de cuadrados residual o intragrupos. El F observado de,95 tiene un valor p de 0,34, este resultado muestra que los tratamientos no son estadísticamente significativos al 5%. Esto confirma que, en este caso, fue adecuado el diseño en bloques porque logró remover de la suma de cuadrados residual, la variación debida a la diferencia entre bloques. Diagnósticos Un diseño en bloques NO será apropiado si: - no hay homogeneidad de varianzas del error de los bloques - no hay homogeneidad de varianzas del error de los tratamientos - Efectos temporales - interacción entre bloque y tratamiento Para analizar la homogeneidad de varianzas por bloques y tratamientos, podemos hacer un ANOVA de una vía definiendo un factor con k b niveles. Para hacer esto será necesario tener repeticiones en cada ivel del factor (lo que no ocurre en nuestro ejemplo). Experimentos factoriales Responden a la necesidad de investigar los efectos de dos o más niveles de más de un tratamiento o factor sobre las unidades experimentales. Por ejemplo, el efecto que tienen fertilizantes con distinta concentración de nitrógeno y fósforo sobre la cosecha de trigo, el efecto de la combinación de antiinflamatorios y antibióticos sobre la sinusitis, etc. Aquí sólo nos ocuparemos del caso más sencillo, el de dos factores, cada uno con dos niveles. Supongamos que se quiere estudiar el efecto del sulfato ferroso (Fe) y de la vitamina C (Vit C) sobre el nivel de hemoglobina de pacientes anémicos. El sulfato ferroso se dará en dos niveles: 00 y 500 mg y la vitamina C en dosis de 50 y 500 mg. Llamaremos () y () los niveles bajo y alto de cada compuesto. El diseño factorial consiste en adjudicar unidades experimentales a las 4 combinaciones posibles de los dos niveles de ambos tratamientos: Fe () Vit C (); Fe () Vit C (); Fe () Vit C (), Fe () Vit C (). El análisis correspondiente a este diseño permite investigar no sólo el efecto fierro y el efecto vitamina C, sino que además la interacción entre ambos. Se dice que hay interacción entre dos factores cuando el efecto de uno de ellos varía según el nivel en que se encuentra el otro y viceversa. En este caso, habría interacción si el nivel () de Fe fuera distinto en presencia de nivel () de Vit C que en presencia de nivel () de Vit C, o bien que el efecto de nivel () de Vit C fuera diferente en presencia de nivel () de Fe que en presencia de nivel () de Fe. No hay interacción si los efectos no varían en relación con el nivel del otro factor. 3

4 En un gráfico la presencia o ausencia de interacción se puede ver de la siguiente manera: Variable PRESENCIA DE INTERACCION Nivel Factor Nivel Factor Variable AUSENCIA DE INTERACCION Nivel Factor Nivel Factor Nivel Factor Nivel Factor Nivel Factor Nivel Factor Supongamos que en el ejemplo, se han adjudicado cuatro unidades experimentales a cada combinación de los factores y que se han obtenido los siguientes resultados: Vit C () Fe () Fe (),5 3,,3 3,5,0 3,4,8,9 Vit C () Fe () Fe (),6 5,5,4 4,8, 4,5,7 4,6 En el diseño de dos factores con dos niveles cada uno, la suma de cuadrado total (SCT) está compuesta por las sumas de cuadrados de cuatro fuentes de variación: la correspondiente a cada uno de los factores, la interacción entre ellos y el residuo o error. Usando SPSS la tabla de análisis de varianza resultado es: (Instrucciones: Analizar - Modelo Lineal General - Univariante - Modelo - Factorial completo - Tipo III y no incluir la intersección en el modelo). Variable dependiente: HB Fuente Modelo FE VITC FE * VITC Error Total Pruebas de los efectos inter-sujetos cuadrados tipo III gl cuadrática F Significación a a. R cuadrado =.999 (R cuadrado corregida =.999) 4

5 Los grados de libertad para niveles de Fe y de Vit C son en cada caso: ( - ) =. La interacción es el producto de los grados de libertad de cada factor: x =. Los grados de libertad de la SCT son (6 - ) = 5, por lo que los grados de libertad del residuo son. Cuando la interacción entre los factores es significativa, ya no se pueden interpretar los efectos principales de cada factor por separado, dado que su acción dependerá del nivel en que se encuentra el otro factor. Todos los valores de F fueron significativos al 5% El gráfico en este caso sería el siguiente: 5.0 s marginales estimadas de HB 4.5 s marginales estimadas FE VITC Se ve que en el nivel () de Fe, la acción de la Vit. C es prácticamente nula. En cambio, en el nivel () de Fe, el hecho de dar además Vit C en dosis alta, da mejor resultado en términos de valores de hemoglobina. 5

ESTADÍSTICA APLICADA. PRÁCTICAS CON SPSS. TEMA 2

ESTADÍSTICA APLICADA. PRÁCTICAS CON SPSS. TEMA 2 ESTADÍSTICA APLICADA. PRÁCTICAS CON SPSS. TEMA 2 1.- ANÁLISIS DE LA VARIANZA CON UN FACTOR El análisis de la varianza estudia el efecto de una o varias variables independientes denominadas factores sobre

Más detalles

INTRODUCCIÓN DIAGRAMA DE DISPERSIÓN. Figura1

INTRODUCCIÓN DIAGRAMA DE DISPERSIÓN. Figura1 Capítulo 5 Análisis de regresión INTRODUCCIÓN OBJETIVO DE LA REGRESIÓN Determinar una función matemática sencilla que describa el comportamiento de una variable dadoslosvaloresdeotrauotrasvariables. DIAGRAMA

Más detalles

Capítulo III Diseños de bloques completos al azar

Capítulo III Diseños de bloques completos al azar Capítulo III Diseños de bloques completos al azar El diseño de bloques completos al azar surge por la necesidad que tiene el investigador de ejercer un control local de la variación dado la existencia

Más detalles

Bloque II (Columnas) B= Y212 C= Y322 D= Y432 C= Y313 D= Y423 E= Y533. A= Y1k2. B= Y2k3

Bloque II (Columnas) B= Y212 C= Y322 D= Y432 C= Y313 D= Y423 E= Y533. A= Y1k2. B= Y2k3 DISEÑO EN CUADRO LATINO En el diseño en cuadro latino (DCL) se controlan dos factores de bloque y se estudia un solo factor de interés. En este sentido, se tienen cuatro fuentes de variación: Los tratamientos

Más detalles

Coeficiente de correlación semiparcial

Coeficiente de correlación semiparcial Coeficiente de correlación semiparcial 1.- Introducción...1.- Correlación semiparcial... 3.- Contribución específica de las distintas variables al modelo de egresión Múltiple... 3 4.- Correlación semiparcial

Más detalles

Tema 1. Modelo de diseño de experimentos (un factor)

Tema 1. Modelo de diseño de experimentos (un factor) Tema 1. Modelo de diseño de experimentos (un factor) Estadística (CC. Ambientales). Profesora: Amparo Baíllo Tema 1: Diseño de experimentos (un factor) 1 Introducción El objetivo del Análisis de la Varianza

Más detalles

Nivel socioeconómico medio. Nivel socioeconómico alto SI 8 15 28 51 NO 13 16 14 43 TOTAL 21 31 42 94

Nivel socioeconómico medio. Nivel socioeconómico alto SI 8 15 28 51 NO 13 16 14 43 TOTAL 21 31 42 94 6. La prueba de ji-cuadrado Del mismo modo que los estadísticos z, con su distribución normal y t, con su distribución t de Student, nos han servido para someter a prueba hipótesis que involucran a promedios

Más detalles

Estadística II Examen Final - Enero 2012. Responda a los siguientes ejercicios en los cuadernillos de la Universidad.

Estadística II Examen Final - Enero 2012. Responda a los siguientes ejercicios en los cuadernillos de la Universidad. Estadística II Examen Final - Enero 2012 Responda a los siguientes ejercicios en los cuadernillos de la Universidad. No olvide poner su nombre y el número del grupo de clase en cada hoja. Indique claramente

Más detalles

DISEÑO Diagrama Características Ventajas Estadísticos

DISEÑO Diagrama Características Ventajas Estadísticos Diseño con post prueba únicamente y grupo control R G 1 X O 1 R G 2 O 2 Grupo que recibe tratamiento y un grupo control. Manipulación de la VI; Presencia o Ausencia. Grupos de comparación, es decir, manipulando

Más detalles

Teoría de la decisión Estadística

Teoría de la decisión Estadística Conceptos básicos Unidad 7. Estimación de parámetros. Criterios para la estimación. Mínimos cuadrados. Regresión lineal simple. Ley de correlación. Intervalos de confianza. Distribuciones: t-student y

Más detalles

Y = ßo + ß1X + ε. La función de regresión lineal simple es expresado como:

Y = ßo + ß1X + ε. La función de regresión lineal simple es expresado como: 1 Regresión Lineal Simple Cuando la relación funcional entre las variables dependiente (Y) e independiente (X) es una línea recta, se tiene una regresión lineal simple, dada por la ecuación donde: Y =

Más detalles

Tipo de punta (factor) (bloques)

Tipo de punta (factor) (bloques) Ejemplo Diseño Bloques al Azar Ejercicio -6 (Pág. 99 Montgomery) Probeta Tipo de punta (factor) (bloques) 9. 9. 9.6 0.0 9. 9. 9.8 9.9 9. 9. 9.5 9.7 9.7 9.6 0.0 0. ) Representación gráfica de los datos

Más detalles

Objetivo: Proponer modelos para analizar la influencia

Objetivo: Proponer modelos para analizar la influencia TEMA 2: DISEÑO DE EXPERIMENTOS Objetivo: Proponer modelos para analizar la influencia de varios factores sobre un fenómeno que nos interesa estudiar. 1. Introducción a los diseños de experimentos factoriales

Más detalles

Análisis Factorial: Análisis de componentes principales

Análisis Factorial: Análisis de componentes principales Análisis Factorial: Análisis de componentes principales Abel Lucena Ferran Carrascosa Universitat Pompeu Fabra 22 de febrero de 2013 En qué consiste el análisis factorial? El análisis factorial agrupa

Más detalles

Evaluación de Regnum 25 EC en el cultivo de maíz para la producción de grano. Rodolfo Alberto Rubio Chávez. Maíz (Zea mays)

Evaluación de Regnum 25 EC en el cultivo de maíz para la producción de grano. Rodolfo Alberto Rubio Chávez. Maíz (Zea mays) Evaluación de Regnum 25 EC en el cultivo de maíz para la producción de grano. Rodolfo Alberto Rubio Chávez Cadelga Maíz (Zea mays) Científica Objetivos Medir el Efecto Fisiológico AgCelence del Fungicida

Más detalles

Problemas resueltos. Tema 12. 2º La hipótesis alternativa será que la distribución no es uniforme.

Problemas resueltos. Tema 12. 2º La hipótesis alternativa será que la distribución no es uniforme. Tema 12. Contrastes No Paramétricos. 1 Problemas resueltos. Tema 12 1.- En una partida de Rol se lanza 200 veces un dado de cuatro caras obteniéndose 60 veces el número 1, 45 veces el número 2, 38 veces

Más detalles

Estadística Inferencial 3.7. Prueba de hipótesis para la varianza. σ gl = n -1. Es decir: Ho: σ 2 15 Ha: σ 2 > 15 (prueba de una cola)

Estadística Inferencial 3.7. Prueba de hipótesis para la varianza. σ gl = n -1. Es decir: Ho: σ 2 15 Ha: σ 2 > 15 (prueba de una cola) UNIDAD III. PRUEBAS DE HIPÓTESIS 3.7 Prueba de hipótesis para la varianza La varianza como medida de dispersión es importante dado que nos ofrece una mejor visión de dispersión de datos. Por ejemplo: si

Más detalles

Pruebas de bondad de ajuste

Pruebas de bondad de ajuste Pruebas de bondad de ajuste Existen pruebas cuantitativas formales para determinar si el ajuste de una distribución paramétrica a un conjunto de datos es buena en algún sentido probabilístico. Objetivo:

Más detalles

3. VARIABLES ALEATORIAS

3. VARIABLES ALEATORIAS . VARIABLES ALEATORIAS L as variables aleatorias se clasiican en discretas y continuas, dependiendo del número de valores que pueden asumir. Una variable aleatoria es discreta si sólo puede tomar una cantidad

Más detalles

CALIDAD DE MARCAS ECONÓMICAS DE ESMALTE DE UÑAS COMPARANDO TIEMPO DE SECADO Y DURACIÓN

CALIDAD DE MARCAS ECONÓMICAS DE ESMALTE DE UÑAS COMPARANDO TIEMPO DE SECADO Y DURACIÓN CALIDAD DE MARCAS ECONÓMICAS DE ESMALTE DE UÑAS COMPARANDO TIEMPO DE SECADO Y DURACIÓN Espinoza Cárdenas Sara Dalila Flores Balderas Mayra Celeste Gómez Llanos Sandoval Ana Isabel LOS ESMALTES DE UÑAS

Más detalles

t de Student para muestras relacionadas

t de Student para muestras relacionadas t de Student para muestras relacionadas Es una prueba paramétrica de comparación de dos muestras relacionadas, debe cumplir las siguientes características: Asignación aleatoria de los grupos Homocedasticidad

Más detalles

EJERCICIOS RESUELTOS TEMA 7

EJERCICIOS RESUELTOS TEMA 7 EJERCICIOS RESUELTOS TEMA 7 7.1. Seleccione la opción correcta: A) Hay toda una familia de distribuciones normales, cada una con su media y su desviación típica ; B) La media y la desviaciones típica de

Más detalles

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B 1. Queremos invertir una cantidad de dinero en dos tipos

Más detalles

CLASE Nº7. Patrones, series y regularidades numéricas

CLASE Nº7. Patrones, series y regularidades numéricas CLASE Nº7 Patrones, series y regularidades numéricas Patrón numérico en la naturaleza Regularidades numéricas Patrones Espiral con triángulos rectángulos Series numéricas REGULARIDADES NUMÉRICAS Son series

Más detalles

Tema 5: Principales Distribuciones de Probabilidad

Tema 5: Principales Distribuciones de Probabilidad Tema 5: Principales Distribuciones de Probabilidad Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 5: Principales Distribuciones de Probabilidad

Más detalles

Determinación del tamaño muestral para calcular la significación del coeficiente de correlación lineal

Determinación del tamaño muestral para calcular la significación del coeficiente de correlación lineal Investigación: Determinación del tamaño muestral para calcular 1/5 Determinación del tamaño muestral para calcular la significación del coeficiente de correlación lineal Autores: Pértegas Día, S. spertega@canalejo.org,

Más detalles

Obtención de Datos. Obtención de Datos. Clasificaciones de estudios. Clasificaciones de estudios

Obtención de Datos. Obtención de Datos. Clasificaciones de estudios. Clasificaciones de estudios Obtención de Datos Obtención de Datos Muestreo y Objetivo Representar la población n lo mejor posible con el mínimo m coste. Condiciones para conseguirlo Procedimientos adecuados Tamaño o muestral suficiente

Más detalles

BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES.

BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES. BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES. Matrices: Se llama matriz de dimensión m n a un conjunto de números reales dispuestos en m filas y n columnas de la siguiente forma: 11 a 12 a 13... a 1n A= a a 21

Más detalles

Diseño de Bloques al azar. Diseño de experimentos p. 1/25

Diseño de Bloques al azar. Diseño de experimentos p. 1/25 Diseño de Bloques al azar Diseño de experimentos p. 1/25 Introducción En cualquier experimento, la variabilidad proveniente de un factor de ruido puede afectar los resultados. Un factor de ruido es un

Más detalles

La Estadística Médica. Descripción General de la Bioestadística. Esquema de la presentación. La Bioestadística. Ejemplos de fuentes de Incertidumbre

La Estadística Médica. Descripción General de la Bioestadística. Esquema de la presentación. La Bioestadística. Ejemplos de fuentes de Incertidumbre Esquema de la presentación A. DESCRIPCIÓN GENERAL La Estadística Médica B. ORGANIZACIÓN DE LA ASIGNATURA 1. PROGRAMA 2. METODOLOGÍA DOCENTE 3. BIBLIOGRAFÍA 4. EVALUACIÓN 2 La Bioestadística Descripción

Más detalles

ANOVA O ANAVA PARA DISEÑOS TOTALMENTE ALEATORIZADOS Y ANOVA PARA DISENOS DE BLOQUES ALEATORIZADOS ALBA MARTINEZ ROMERO MARY SOL MEZA CHAVEZ

ANOVA O ANAVA PARA DISEÑOS TOTALMENTE ALEATORIZADOS Y ANOVA PARA DISENOS DE BLOQUES ALEATORIZADOS ALBA MARTINEZ ROMERO MARY SOL MEZA CHAVEZ ANOVA O ANAVA PARA DISEÑOS TOTALMENTE ALEATORIZADOS Y ANOVA PARA DISENOS DE BLOQUES ALEATORIZADOS ALBA MARTINEZ ROMERO MARY SOL MEZA CHAVEZ Presentado a: MARIA ESTELA SEVERICHE CORPORACION UNIVERSITARIA

Más detalles

Proyecciones. Producto escalar de vectores. Aplicaciones

Proyecciones. Producto escalar de vectores. Aplicaciones Proyecciones La proyección de un punto A sobre una recta r es el punto B donde la recta perpendicular a r que pasa por A corta a la recta r. Con un dibujo se entiende muy bien. La proyección de un segmento

Más detalles

TEST DE HIPÓTESIS. Ejemplo: vamos a analizar los resultados de 5 Servicios de Neonatología de una

TEST DE HIPÓTESIS. Ejemplo: vamos a analizar los resultados de 5 Servicios de Neonatología de una TEST DE HIPÓTESIS Ejemplo: vamos a analizar los resultados de 5 Servicios de Neonatología de una provincia según un indicador: mortalidad de recién nacidos con peso 1.000 gr. Supongamos, como ejemplo,

Más detalles

PRÁCTICA 3: Ejercicios del capítulo 5

PRÁCTICA 3: Ejercicios del capítulo 5 PRÁCICA 3: Eercicios del capítulo 5 1. Una empresa bancaria a contratado a un equipo de expertos en investigación de mercados para que les asesoren sobre el tipo de campaña publicitaria más recomendable

Más detalles

FACTORIALES FRACCIONADOS 2 f-p

FACTORIALES FRACCIONADOS 2 f-p 1 FACTORIALES FRACCIONADOS 2 f-p Aun en los experimentos 2 f el número de condiciones experimentales crece exponencialmente con el número de factores f a estudiar. El n de interacciones de r factores combinados

Más detalles

LAB 13 - Análisis de Covarianza - CLAVE

LAB 13 - Análisis de Covarianza - CLAVE LAB 13 - Análisis de Covarianza - CLAVE Se realizó un experimento para estudiar la eficacia de un promotor de crecimiento en terneros en lactación. Se usaron cuatro dosis de la droga (0, 2.5, 5 y 7.5 mg).

Más detalles

AGRO 6600 Segundo Examen Parcial

AGRO 6600 Segundo Examen Parcial AGRO 6600 Segundo Examen Parcial Nombre: 2012 Instrucciones: Apague celulares. Se descontarán puntos si su celular suena durante el examen. Por favor lea los enunciados y las preguntas cuidadosamente.

Más detalles

Principales resultados Región de Antofagasta

Principales resultados Región de Antofagasta Principales resultados Región de Antofagasta Muestra y población representada Para la región de Antofagasta, la muestra efectiva fue de 1.315 alumnos que representan a 36.971 alumnos de 8 básico a 4 medio

Más detalles

Julia García Salinero. Departamento de Investigación FUDEN. Introducción

Julia García Salinero. Departamento de Investigación FUDEN. Introducción 1 Análisis de datos en los estudios epidemiológicos V Prueba de Chi cuadrado y Análisis de la varianza. Departamento de Investigación FUDEN. Introducción Continuamos el análisis de los estudios epidemiológicos,

Más detalles

Estadística Avanzada y Análisis de Datos

Estadística Avanzada y Análisis de Datos 1-1 Estadística Avanzada y Análisis de Datos Javier Gorgas y Nicolás Cardiel Curso 2006-2007 2007 Máster Interuniversitario de Astrofísica 1-2 Introducción En ciencia tenemos que tomar decisiones ( son

Más detalles

4. Medidas de tendencia central

4. Medidas de tendencia central 4. Medidas de tendencia central A veces es conveniente reducir la información obtenida a un solo valor o a un número pequeño de valores, las denominadas medidas de tendencia central. Sea X una variable

Más detalles

Esquema (1) Análisis de la Varianza y de la Covarianza. ANOVA y ANCOVA. ANOVA y ANCOVA 1. Análisis de la Varianza de 1 Factor

Esquema (1) Análisis de la Varianza y de la Covarianza. ANOVA y ANCOVA. ANOVA y ANCOVA 1. Análisis de la Varianza de 1 Factor Esquema (1) Análisis de la arianza y de la Covarianza ANOA y ANCOA 1. (Muestras independientes). () 3. Análisis de la arianza de Factores 4. Análisis de la Covarianza 5. Análisis con más de Factores J.F.

Más detalles

Teorema de Bayes. mientras que B tiene una tasa de defectos del 4%.

Teorema de Bayes. mientras que B tiene una tasa de defectos del 4%. Teorema de Bayes Ejemplo: En una empresa manufacturera, una máquina A produce el 60% de la producción total, mientras que una máquina B el restante 40%. 71 El 2% de las unidades producidas por A son defectuosas,

Más detalles

Introducción a la estadística básica, el diseño de experimentos y la regresión

Introducción a la estadística básica, el diseño de experimentos y la regresión Introducción a la estadística básica, el diseño de experimentos y la regresión Objetivos José Gabriel Palomo Sánchez gabriel.palomo@upm.es E.U.A.T. U.P.M. Julio de 2011 Objetivo general Organizar el estudio

Más detalles

Análisis de Componentes de la Varianza

Análisis de Componentes de la Varianza Análisis de Componentes de la Varianza Resumen El procedimiento de Análisis de Componentes de Varianza está diseñado para estimar la contribución de múltiples factores a la variabilidad de una variable

Más detalles

IDE y Análisis de datos

IDE y Análisis de datos IDE y Análisis de datos Dept. of Marine Science and Applied Biology Jose Jacobo Zubcoff Presentación Objetivos Metodología Introducción IDE y Análisis de datos 1 Planeación de la investigación Proceso

Más detalles

LINEALIDAD DE VITAMINA D3. Area. 27 0,06 0,09 0,12 0,15 0,18 0,21 Concentracion (mg/ml)

LINEALIDAD DE VITAMINA D3. Area. 27 0,06 0,09 0,12 0,15 0,18 0,21 Concentracion (mg/ml) DATOS PRIMARIOS PARA LINEALIDAD CONCENTRACIÓN X Y 50 75 100 125 150 mg/ml 27.399 38.298 50.350 61.005 76.347 0.0688 27.476 27.276 38.787 50.835 61.210 76.051 0.1032 38.379 27.754 38.052 50.598 59.922 76.294

Más detalles

Los modelos que permite construir el ANOVA pueden ser reducidos a la siguiente forma:

Los modelos que permite construir el ANOVA pueden ser reducidos a la siguiente forma: Ignacio Martín Tamayo 25 Tema: ANÁLISIS DE VARIANZA CON SPSS 8.0 ÍNDICE --------------------------------------------------------- 1. Modelos de ANOVA 2. ANOVA unifactorial entregrupos 3. ANOVA multifactorial

Más detalles

Estadística II Tema 4. Regresión lineal simple. Curso 2010/11

Estadística II Tema 4. Regresión lineal simple. Curso 2010/11 Estadística II Tema 4. Regresión lineal simple Curso 010/11 Tema 4. Regresión lineal simple Contenidos El objeto del análisis de regresión La especificación de un modelo de regresión lineal simple Estimadores

Más detalles

TEMA 2: EL INTERÉS SIMPLE

TEMA 2: EL INTERÉS SIMPLE TEMA 2: EL INTERÉS SIMPLE 1.- CAPITALIZACIÓN SIMPLE 1.1.- CÁLCULO DEL INTERÉS: Recibe el nombre de capitalización simple la ley financiera según la cual los intereses de cada periodo de capitalización

Más detalles

11. PRUEBAS NO PARAMÉTRICAS

11. PRUEBAS NO PARAMÉTRICAS . PRUEBAS NO PARAMÉTRICAS Edgar Acuña http://math.uprm/edu/~edgar UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ PRUEBAS NO PARAMÉTRICAS Se estudiarán las pruebas noparamétricas, las cuales

Más detalles

no paramétrica comparar más de dos mediciones de rangos (medianas)

no paramétrica comparar más de dos mediciones de rangos (medianas) Friedman Es una prueba no paramétrica de comparación de tres o más muestras relacionadas, debe cumplir las siguientes características: Es libre de curva, no necesita una distribución específica Nivel ordinal

Más detalles

Diferencia de medias. Estadística II Equipo Docente: Iris Gallardo Andrés Antivilo Francisco Marro

Diferencia de medias. Estadística II Equipo Docente: Iris Gallardo Andrés Antivilo Francisco Marro Sesión 15 Prueba de Hipótesis para la Diferencia de medias En qué contexto es útil una prueba de hipótesis i para la diferencia i de medias? 1. Cuando se trabaja simultáneamente con una variable categórica

Más detalles

y = b 0 + b 1 x 1 + + b k x k

y = b 0 + b 1 x 1 + + b k x k Las técnicas de Regresión lineal multiple parten de k+1 variables cuantitativas: La variable respuesta (y) Las variables explicativas (x 1,, x k ) Y tratan de explicar la y mediante una función lineal

Más detalles

CAPÍTULO IV. Resultados. Este capítulo tiene como objetivo exponer al lector los resultados obtenidos

CAPÍTULO IV. Resultados. Este capítulo tiene como objetivo exponer al lector los resultados obtenidos Capítulo IV Resultados 33 CAPÍTULO IV Resultados Este capítulo tiene como objetivo exponer al lector los resultados obtenidos del estudio que se realizó a través de la recopilación de datos de los cinco

Más detalles

Para ello hacemos lo siguiente: Analizar. o Comparar medias. García Bellido, R.; González Such, J. y Jornet Meliá, J.M.

Para ello hacemos lo siguiente: Analizar. o Comparar medias. García Bellido, R.; González Such, J. y Jornet Meliá, J.M. SPSS: PRUEBA T PRUEBA T PARA MUESTRAS INDEPENDIENTES El procedimiento Prueba T para muestras independientes debe utilizarse para comparar las medias de dos grupos de casos, es decir, cuando la comparación

Más detalles

Efecto Grados de Libertad A 1 D 1 B 1 E 1 C 1 F 1 AD 1 CD 1 AE 1 CD 1 AF 1 CF 1 BD 1 BE 1 BF 1

Efecto Grados de Libertad A 1 D 1 B 1 E 1 C 1 F 1 AD 1 CD 1 AE 1 CD 1 AF 1 CF 1 BD 1 BE 1 BF 1 Diseños Robustos El diseño robusto es esencialmente un principio que hace énfasis en seleccionar adecuadamente los niveles de los factores controlables en el proceso para la manufactura de productos. El

Más detalles

Combinación lineal, Independencia Lineal, y Vectores que generan (Sección 6.3 pág. 291)

Combinación lineal, Independencia Lineal, y Vectores que generan (Sección 6.3 pág. 291) Combinación lineal, Independencia Lineal, y Vectores que generan (Sección 6.3 pág. 291) I. Combinación Lineal Definición: Sean v 1, v 2, v 3,, v n vectores en el espacio vectorial V. Entonces cualquier

Más detalles

Método de cuadrados mínimos

Método de cuadrados mínimos REGRESIÓN LINEAL Gran parte del pronóstico estadístico del tiempo está basado en el procedimiento conocido como regresión lineal. Regresión lineal simple (RLS) Describe la relación lineal entre dos variables,

Más detalles

Capítulo 6. Análisis bivariante de variables

Capítulo 6. Análisis bivariante de variables Contenidos: Capítulo 6 Análisis bivariante de variables Distribución bidimensional de frecuencias ( tabla de correlación o contingencia ) Distribuciones marginales Coeficientes de Asociación Análisis de

Más detalles

Matrices, determinantes, sistemas de ecuaciones lineales.

Matrices, determinantes, sistemas de ecuaciones lineales. UNIVERSIDAD DE MURCIA Departamento de Matemáticas Óptica y Optometría Resúmenes Curso 2007-2008 Matrices, determinantes, sistemas de ecuaciones lineales. Una matriz A de orden m n es una colección de m

Más detalles

Introducción al Tema 9

Introducción al Tema 9 Tema 2. Análisis de datos univariantes. Tema 3. Análisis de datos bivariantes. Tema 4. Correlación y regresión. Tema 5. Series temporales y números índice. Introducción al Tema 9 Descripción de variables

Más detalles

INTERVALO DE CONFIANZA PARA LA PROPORCIÓN

INTERVALO DE CONFIANZA PARA LA PROPORCIÓN INTERVALO DE CONFIANZA PARA LA PROPORCIÓN Si deseamos estimar la proporción p con que una determinada característica se da en una población, a partir de la proporción p' observada en una muestra de tamaño

Más detalles

Distribuciones bidimensionales. Regresión.

Distribuciones bidimensionales. Regresión. Temas de Estadística Práctica Antonio Roldán Martínez Proyecto http://www.hojamat.es/ Tema 5: Distribuciones bidimensionales. Regresión. Resumen teórico Resumen teórico de los principales conceptos estadísticos

Más detalles

Cap. 1 Funciones de Varias variables. Moisés Villena Muñoz

Cap. 1 Funciones de Varias variables. Moisés Villena Muñoz Cap. Funciones de Varias variables. Definición de Funciones de dos variables. Dominio. Grafica..4 Curvas de nivel. Derivadas Parciales.6 Funciones Homogéneas.7 Funciones Nomotéticas.8 Diferencial Total.9

Más detalles

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos Agro 6998 Conferencia Introducción a los modelos estadísticos mixtos Los modelos estadísticos permiten modelar la respuesta de un estudio experimental u observacional en función de factores (tratamientos,

Más detalles

8.2.5. Intervalos para la diferencia de medias de dos poblaciones

8.2.5. Intervalos para la diferencia de medias de dos poblaciones 8.. INTERVALOS DE CONFIANZA PARA LA DISTRIBUCIÓN NORMAL 89 distribuye de modo gaussiana. Para ello se tomó una muestra de 5 individuos (que podemos considerar piloto), que ofreció los siguientes resultados:

Más detalles

Pruebas de Hipótesis-ANOVA. Curso de Seminario de Tesis Profesor QF Jose Avila Parco Año 2016

Pruebas de Hipótesis-ANOVA. Curso de Seminario de Tesis Profesor QF Jose Avila Parco Año 2016 Pruebas de Hipótesis-ANOVA Curso de Seminario de Tesis Profesor Q Jose Avila Parco Año 2016 Análisis de la Varianza de un factor (ANOVA) El análisis de la varianza (ANOVA) es una técnica estadística paramétrica

Más detalles

ARITMÉTICA Y ÁLGEBRA

ARITMÉTICA Y ÁLGEBRA ARITMÉTICA Y ÁLGEBRA 1.- Discutir el siguiente sistema, según los valores de λ: Resolverlo cuando tenga infinitas soluciones. Universidad de Andalucía SOLUCIÓN: Hay cuatro ecuaciones y tres incógnitas,

Más detalles

Regresión con variables independientes cualitativas

Regresión con variables independientes cualitativas Regresión con variables independientes cualitativas.- Introducción...2 2.- Regresión con variable cualitativa dicotómica...2 3.- Regresión con variable cualitativa de varias categorías...6 2.- Introducción.

Más detalles

Principios Básicos del Diseño Experimental

Principios Básicos del Diseño Experimental Capitulo I Principios Básicos del Diseño Experimental Hace más de seis décadas que Sir Ronald A. Fisher, sentó los cimientos que ha llegado a conocerse por el título de su libro "The design of experiment.

Más detalles

FUNCIONES CUADRÁTICAS. PARÁBOLAS

FUNCIONES CUADRÁTICAS. PARÁBOLAS FUNCIONES CUADRÁTICAS. PARÁBOLAS 1. FUNCIONES CUADRÁTICAS Representemos, en función de la longitud de la base (x), el área (y) de todos los rectángulos de perímetro 1 metros. De ellos, cuáles son las medidas

Más detalles

Estadística inferencial. Aplicación con el SPSS

Estadística inferencial. Aplicación con el SPSS Estadística inferencial. Aplicación con el SPSS Sabina Pérez Vicente Unidad de Calidad APES Hospital Costa del Sol sabina.perez.exts@juntadeandalucia.es Comparabilidad inicial de los grupos Se debe realizar

Más detalles

Problemas resueltos. Temas 10 y 11 11, 9, 12, 17, 8, 11, 9, 4, 5, 9, 14, 9, 17, 24, 19, 10, 17, 17, 8, 23, 8, 6, 14, 16, 6, 7, 15, 20, 14, 15.

Problemas resueltos. Temas 10 y 11 11, 9, 12, 17, 8, 11, 9, 4, 5, 9, 14, 9, 17, 24, 19, 10, 17, 17, 8, 23, 8, 6, 14, 16, 6, 7, 15, 20, 14, 15. Temas 10 y 11. Contrastes paramétricos de hipótesis. 1 Problemas resueltos. Temas 10 y 11 1- las puntuaciones en un test que mide la variable creatividad siguen, en la población general de adolescentes,

Más detalles

BIOESTADISTICA (55-10536) Variables de confusión y de modificación. 1) Diferenciar e identificar variables de confusión y de modificación.

BIOESTADISTICA (55-10536) Variables de confusión y de modificación. 1) Diferenciar e identificar variables de confusión y de modificación. Departamento de Estadística Universidad Carlos III de Madrid BIOESTADISTICA (55-10536) Variables de confusión y de modificación CONCEPTOS CLAVE 1) Diferenciar e identificar variables de confusión y de

Más detalles

Definiciones Diseño de Experimentos: Diseño del Experimento: Replicación o Repetición:

Definiciones Diseño de Experimentos: Diseño del Experimento: Replicación o Repetición: Definiciones Diseño de Experimentos: La experimentación es una técnica utilizada para encontrar el comportamiento de una variable a partir de diferentes combinaciones de factores o variables de entrada

Más detalles

Uno de los objetivos marcados por RES es que el alumno pueda construir sucesiones de números

Uno de los objetivos marcados por RES es que el alumno pueda construir sucesiones de números DE MODELOS EDUCATIVOS ASESORÍA SECUNDARIA BIMESTRE Sucesiones numéricas M. en C. César O. Pérez Carrizales volkhavaar@hotmail.com Uno de los objetivos marcados por RES es que el alumno pueda construir

Más detalles

SESIÓN PRÁCTICA 7: REGRESION LINEAL SIMPLE PROBABILIDAD Y ESTADÍSTICA. PROF. Esther González Sánchez. Departamento de Informática y Sistemas

SESIÓN PRÁCTICA 7: REGRESION LINEAL SIMPLE PROBABILIDAD Y ESTADÍSTICA. PROF. Esther González Sánchez. Departamento de Informática y Sistemas SESIÓN PRÁCTICA 7: REGRESION LINEAL SIMPLE PROBABILIDAD Y ESTADÍSTICA PROF. Esther González Sánchez Departamento de Informática y Sistemas Facultad de Informática Universidad de Las Palmas de Gran Canaria

Más detalles

PROYECTO DE REFUERZO ACADÉMICO PARA ESTUDIANTES DE EDUCACIÓN MEDIA PRAEM 2015

PROYECTO DE REFUERZO ACADÉMICO PARA ESTUDIANTES DE EDUCACIÓN MEDIA PRAEM 2015 MINISTERIO DE EDUCACIÓN DIRECCIÓN NACIONAL DE EDUCACIÓN Prueba de Diagnóstico de Matemática Segundo Año de Bachillerato PROYECTO DE REFUERZO ACADÉMICO PARA ESTUDIANTES DE EDUCACIÓN MEDIA PRAEM 2015 NOMBRE

Más detalles

Tema II. Las muestras y la teoría paramétrica

Tema II. Las muestras y la teoría paramétrica 2.1. Muestras y muestreos: - La muestra:. Subconjunto de elementos de la población. Necesidad práctica:. Motivos económicos. Imposibilidad (práctica/teórica) de estudiar TODA la población. Inconveniencia

Más detalles

Variable Estadística Bidimensional

Variable Estadística Bidimensional Capítulo 2 Variable Estadística Bidimensional 21 Distribución de Frecuencias Bidimensional Sea una población de n individuos donde estudiamos, simultáneamente, dos variables X e Y Seanx 1,x 2,,x k las

Más detalles

CAPÍTULO 8 CONCLUSIONES Y RECOMENDACIONES. Como conclusiones de este proyecto de tesis, hay que tocar varios puntos, tales como el

CAPÍTULO 8 CONCLUSIONES Y RECOMENDACIONES. Como conclusiones de este proyecto de tesis, hay que tocar varios puntos, tales como el CAPÍTULO 8 CONCLUSIONES Y RECOMENDACIONES Como conclusiones de este proyecto de tesis, hay que tocar varios puntos, tales como el porqué no se llegó a los acabados superficiales o porqué el diseño de experimentos

Más detalles

TEORIA DE NUMEROS (I) REGLAS DE DIVISIBILIDAD

TEORIA DE NUMEROS (I) REGLAS DE DIVISIBILIDAD Un número es divisible por: TEORIA DE NUMEROS (I) REGLAS DE DIVISIBILIDAD - 2 Si es PAR. - 3 Si la suma de sus cifras es divisible por 3. - 4 Si el número formado por sus dos últimas cifras es divisible

Más detalles

b.- Realiza las comparaciones múltiples mediante los métodos LSD, Bonferroni y Tuckey.

b.- Realiza las comparaciones múltiples mediante los métodos LSD, Bonferroni y Tuckey. Ejercicio 1: Se someten 24 muestras de agua a 4 tratamientos de descontaminación diferentes y asignados al azar. Para cada muestra se mide un indicador de la calidad del agua ( cuanto más alto es el indicador,

Más detalles

FUERZAS DE UN FLUIDO EN REPOSO SOBRE SUPERFICIES PLANAS

FUERZAS DE UN FLUIDO EN REPOSO SOBRE SUPERFICIES PLANAS FUERZAS DE UN FLUIDO EN REPOSO SOBRE SUPERFICIES PLANAS En esta sección consideramos los efectos de la presión de un fluido, que actúa sobre superficies planas (lisas), en aplicaciones como las ilustradas.

Más detalles

Probabilidad. La probabilidad mide la frecuencia con la que aparece un resultado determinado cuando se realiza un experimento.

Probabilidad. La probabilidad mide la frecuencia con la que aparece un resultado determinado cuando se realiza un experimento. Matemáticas segundo medio COLEGIO SSCC CONCEPCION NOMBRE: Clase Teórica Práctica Nº 30 Probabilidad Probabilidad: Introducción La probabilidad mide la frecuencia con la que aparece un resultado determinado

Más detalles

Matriz sobre K = R o C de dimensión m n

Matriz sobre K = R o C de dimensión m n 2 Matrices y Determinantes 21 Matrices Matriz sobre K = R o C de dimensión m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Tipos de matrices: Cuadrada: n n = (a ij) i=1,,m j=1,,n Nula: (0) i,j 1 0

Más detalles

REGRESIÓN LINEAL CON SPSS

REGRESIÓN LINEAL CON SPSS ESCUELA SUPERIOR DE INFORMÁTICA Prácticas de Estadística REGRESIÓN LINEAL CON SPSS 1.- INTRODUCCIÓN El análisis de regresión lineal es una técnica estadística utilizada para estudiar la relación entre

Más detalles

Comparación de Líneas de Regresión

Comparación de Líneas de Regresión Comparación de Líneas de Regresión Resumen El procedimiento de Comparación de Líneas de Regresión esta diseñado para comparar líneas de regresión relacionas con Y y X en dos o mas niveles de un factor

Más detalles

PRÁCTICO: : POLINOMIOS

PRÁCTICO: : POLINOMIOS Página: 1 APUNTE TEÓRICO-PRÁCTICO PRÁCTICO: : POLINOMIOS UNIVERSIDAD NACIONAL DE RIO NEGRO Asignatura: Razonamiento y Resolución de Problemas Carreras: Lic. en Economía, Lic. en Administración, Lic. en

Más detalles

INFORMACIÓN SOBRE LA PRUEBA DE ACCESO (PAU) A LA UNIVERSIDAD DE OVIEDO. CURSO 2015/2016

INFORMACIÓN SOBRE LA PRUEBA DE ACCESO (PAU) A LA UNIVERSIDAD DE OVIEDO. CURSO 2015/2016 INFORMACIÓN SOBRE LA PRUEBA DE ACCESO (PAU) A LA UNIVERSIDAD DE OVIEDO. CURSO 2015/2016 Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II 1. COMENTARIOS Y/O ACOTACIONES RESPECTO AL TEMARIO EN RELACIÓN

Más detalles

MENORES, COFACTORES Y DETERMINANTES

MENORES, COFACTORES Y DETERMINANTES MENORES, COFACTORES Y DETERMINANTES 1. Introducción. 2. Determinante de una matriz de 3 x 3. 3. Menores y cofactores. 4. Determinante de una matriz de n x n. 5. Matriz triangular. 6. Determinante de una

Más detalles

Estadísticos Aplicados en el SPSS 2008

Estadísticos Aplicados en el SPSS 2008 PRUEBAS ESTADISTICAS QUE SE APLICAN (SPSS 10.0) PARAMÉTRICAS:... 2 Prueba t de Student para una muestra... 2 Prueba t par muestras independientes... 2 ANOVA de una vía (multigrupo)... 2 ANOVA de dos vías

Más detalles

Prueba de hipótesis. 1. Considerando lo anterior específica: a. La variable de estudio: b. La población: c. El parámetro. d. Estimador puntual:

Prueba de hipótesis. 1. Considerando lo anterior específica: a. La variable de estudio: b. La población: c. El parámetro. d. Estimador puntual: Prueba de hipótesis Problema Un grupo de profesores, de cierto estado de la república, plantea una investigación acerca del aprendizaje de las ciencias naturales en la escuela primaria. Uno de los objetivos

Más detalles

HOMOGENEIDAD DIMENSIONAL

HOMOGENEIDAD DIMENSIONAL HOMOGENEIDAD DIMENSIONAL Los observables que podemos medir se agrupan en conjuntos caracterizados por una propiedad que llamamos magnitud. Existe la magnitud tiempo, la magnitud velocidad, la magnitud

Más detalles

2.5. Asimetría y apuntamiento

2.5. Asimetría y apuntamiento 2.5. ASIMETRÍA Y APUNTAMIENTO 59 variable Z = X x S (2.9) de media z = 0 y desviación típica S Z = 1, que denominamos variable tipificada. Esta nueva variable carece de unidades y permite hacer comparables

Más detalles

Tema 3. Introducción a la estadística descriptiva: Ejercicios

Tema 3. Introducción a la estadística descriptiva: Ejercicios Tema 3. Introducción a la estadística descriptiva: Ejercicios Profesora Esther Chiner Sanz BIBLIOGRAÍA Amón, J. (1999): Estadística para psicólogos I. Estadística descriptiva. Madrid, España: Pirámide.

Más detalles

El método utilizado en esta investigación será el método probabilístico ya que el universo en estudio es finito.

El método utilizado en esta investigación será el método probabilístico ya que el universo en estudio es finito. CAPITULO III: MARCO METODOLOGICO. 3.1 TIPO DE INVESTIGACION: El tipo de estudio que se desarrollara en la investigación es, descriptiva, porque está dirigido a determinar cómo es, cómo está la situación

Más detalles

PATRONES DE DISTRIBUCIÓN ESPACIAL

PATRONES DE DISTRIBUCIÓN ESPACIAL PATRONES DE DISTRIBUCIÓN ESPACIAL Tipos de arreglos espaciales Al azar Regular o Uniforme Agrupada Hipótesis Ecológicas Disposición al Azar Todos los puntos en el espacio tienen la misma posibilidad de

Más detalles

Fuerza Eléctrica y Ley de Coulomb

Fuerza Eléctrica y Ley de Coulomb Fuerza Eléctrica y Ley de Coulomb Junto con fuerza magnética (a la cuál está intimamente relacionada) es una de las cuatro fuerzas fundamentales de la naturaleza y la única que actua en nuestra vida diaria

Más detalles
Sitemap