Teoría de la Empresa. La Tecnología de Producción


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Teoría de la Empresa. La Tecnología de Producción"

Transcripción

1 Teoría de la Empresa La Tecnología de Producción

2 La Empresa Qué es una Empresa? En la práctica, el concepto de empresa, y el papel que las empresa desempeñan en la economía, son extraordinariamente complejos. En esta introducción a la teoría de la empresa adoptaremos una visión simple de la actividad de las empresas: nos limitaremos a considerarlas como agentes económicos cuya actividad consiste en transformar bienes; es decir, producir ciertos bienes (outputs) utilizando otros bienes como inputs. Así, una empresa queda completamente caracterizada por su tecnología.

3 La Tecnología de Producción La tecnología de producción puede describirse mediante el conjunto de posibilidades de producción Y, un subconjunto de R l. Un plan de producción es un vector en R l en el que las coordenadas positivas son los outputs y las negativas son inputs. Ejemplo: Supongamos que hay 5 bienes (l=5). Si el plan de producción (-5, 2, -6, 3, 0) es factible, esto significa que la empresa puede producir 2 unidades del bien 2 y 3 unidades del bien 4 usando 5 unidades del bien 1 y 6 unidades del bien 3 como inputs. En este plan de producción el bien 5 ni aparece ni como input ni como output.

4 La Tecnología de Producción Para simplificar el problema, supondremos que la empresa produce un sólo output (Q) utilizando dos inputs (L y K) Así, una tecnología de producción se puede describir mediante una función de producción, F(L,K), que nos indica la cantidad máxima Q de output que se puede producir para cada vector de inputs (L,K) 0 El conjunto de posibilidades de producción Y se puede describir como los niveles de producción Q y combinaciones de factores (L,K) que satisfacen la desigualdad Q F(L,K). La ecuación Q = F(L,K) describe la frontera de posibilidades de producción.

5 Función de Producción Q = F(L,K) Q = producción L = trabajo K = capital F L = F / L > 0 (producto marginal del trabajo) F K = F / K > 0 (producto marginal del capital)

6 Ejemplo: Función de Producción Cantidad de trabajo Cantidad de capital

7 Isocuantas La función de producción describe también las combinaciones de factores que permiten obtener un mismo nivel de producto. Así, podríamos diferenciar entre - tecnologías intensivas en trabajo - tecnologías intensivas en capital.

8 5 4 K 75 Isocuantas Combinaciones de trabajo y capital que permiten producir 75 unidades de producto L

9 3 K Isocuantas 5 Isocuanta: curva que describe todas las combinaciones de trabajo 4 y capital que generan el mismo nivel de producción. 2 1 Q= L

10 Mapas de Isocuantas 5 K 4 3 Isocuantas: describen las combinaciones de factores que permiten obtener 55, 75 y 90 unidades de producto. 2 Q 3 = 90 1 Q 1 = Q 2 = L

11 Mapas de Isocuantas Las isocuantas muestran la flexibilidad que tienen las empresas para sustituir un input por otro input manteniendo constante el nivel de producción. Esta información permite al productor responder a cambios en los precios de factores.

12 Factores Sustitutivos y Complementarios Imperfectos K A 1 B La tasa a la que los factores pueden sustituirse varía a lo largo de la isocuanta /3 C 1 1/3 D 1 E L

13 K 2 Factores Sustitutivos Perfectos Los factores pueden sustituirse a una tasa constante, cualquiera que sea la combinación de factores que se esté utilizando (veremos que la RMST es una constante). 1 Función de producción: F(L,K)= L + K. 0 Q 1 Q 2 Q L

14 Factores Complementarios Perfectos K (Martillos) 4 3 Es imposible sustituir un factor de producción por otro: un carpintero sin martillo no produce, y viceversa 2 1 Función de producción: F(L,K) = min{l,k} L (Carpinteros)

15 La producción con un factor variable Vamos a estudiar las curvas de producto. Para ello, supongamos que todos los factores menos uno son fijos, y consideremos cómo varía la producción con el factor variable: Q = F(L,K 0 ) = f(l)

16 Ejemplo numérico: producción con un factor variable Cantidad Cantidad Producción de trabajo (L) de capital (K) total (Q) Suponemos que el capital es el input fijo y el trabajo el factor variable

17 Curva de producto total Q 112 Producto total L

18 Producto medio Definimos el producto medio del trabajo (PMe L ) como la cantidad de output producida por cada unidad de trabajo PMe L = Q / L

19 Ejemplo numérico: producto medio Cantidad Cantidad Producción Producto de trabajo (L) de capital (K) total (Q) medio

20 Curvas de producto total y de producto medio Q 112 Producto total Q/L L 30 Producto medio L

21 Producto marginal El producto marginal del trabajo (PM L ) se define como la producción adicional obtenida cuando se incrementa la cantidad de trabajo en una unidad PM L = ΔQ ΔL

22 Ejemplo numérico: producto marginal Cantidad Cantidad Producción Producto Producto de trabajo (L) de capital (K) total (Q) medio marginal

23 Curvas de producto total y de producto marginal Q 112 Producto total Q/L L 30 Producto marginal L

24 Q 112 Producto medio y producto marginal Q 112 D 60 B L L Q C En B Q/L < dq/dl En C Q/L = dq/dl En D Q/L > dq/dl L

25 Producto medio y producto marginal Q/L PM L A la izquierda de C: PM > PMe y PMe es creciente A la derecha de C: PM < PMe y PMe es decreciente En C: PM = PMe y PMe alcanza su máximo 30 Producto marginal 20 C Producto medio L

26 Relación Marginal de Sustitución Técnica La Relación Marginal de Sustitución Técnica (RMST) indica las proporciones en las que puede sustituirse trabajo por capital de manera que la producción permanezca constante. Si la definimos como RMST = -F L /F K, indica el número de unidades adicionales de capital necesarias para mantener constante el nivel de producción cuando la cantidad del input trabajo disminuye en una unidad.

27 Relación Marginal de Sustitución Técnica K A RMST = ΔΚ ΔL 3 1 B ΔL=1 ΔΚ= RMST = -(-2/1) = L

28 Relación Marginal de Sustitución Técnica K A RMST = ΔΚ ΔL ΔK B La RMST es la pendiente de la recta que une A y B. ΔL L

29 Relación Marginal de Sustitución Técnica K RMST = lim -ΔΚ/ ΔL ΔL 0 C Cuando ΔL tiende a cero, RMST es la pendiente de la isocuanta en el punto C. L

30 Cálculo de la RMST Análogamente a lo que hacíamos con las funciones de utilidad, podemos calcular la RMST como un cociente de productos marginales utilizando el Teorema de la Función Implícita: donde Q 0 =F(L 0,,K 0 ). F(L,K)=Q 0 (*) Derivando totalmente la ecuación (*), tenemos F L dl +F K dk = 0. La derivada de la función que define la ecuación (*) es dk/dl= -F L /F K. Esta fórmula nos permite evaluar la RMST en cualquier punto de la isocuanta.

31 Ejemplo: Cobb-Douglas Sea Q = F(L,K) = L 3/4 K 1/4 Calcule la RMST Solución: F L = 3/4 (K / L) 1/4 F K = 1/4 (L / K) 3/4 RMST = -F L / F K = -3 K / L

32 Ejemplo: Sustitutivos Perfectos Sea Q = F(L,K) = L + 2K Calcule la RMST Solución: F L = 1 F K = 2 RMST = -F L / F K = -1/2 (constante)

33 Rendimientos a Escala Modificación de la escala: aumento de todos los factores en la misma proporción (ej. (L,K) (2L,2K)) Rendimientos a escala: tasa a la que aumenta la producción cuando se incrementa la escala.

34 Rendimientos a Escala Consideremos una modificacion de la escala: (L, K) (rl, rk), con r > 1. Decimos que Hay rendimientos crecientes de escala si F(rL, rk) > r F(L,K) Hay rendimientos constantes de escala si F(rL, rk) = r F(L,K) Hay rendimientos decrecientes de escala si F(rL, rk) < r F(L,K).

35 Ejemplo: Rendimientos Constantes a Escala K 6 Q= Q=20 Las isocuantas son equidistantes. Q= L

36 Ejemplo: Rendimientos Crecientes a Escala K 4 Las isocuantas están cada vez más cerca Q=20 Q=30 Q= L

37 Ejemplo: Rendimientos Decrecientes a Escala K 12 Las isocuantas están cada vez más lejos. Q=30 6 Q=20 2 Q= L

38 Ejemplo: Rendimientos a Escala Sea la función de producción Q = F(L,K) = L + K Diga cómo son los rendimientos de escala. Solución: Sea r > 1. Entonces F(rL,rK) = (rl) + (rk) = r (L+K) = r F(L,K) La función F presenta rendimientos constantes a escala.

39 Ejemplo: Rendimientos a Escala Sea la función de producción Q = F(L,K) = LK Diga cómo son los rendimientos de escala. Solución: Sea r > 1. Entonces F(rL,rK) = (rl)(rk) = r 2 (LK) = r 2 F(L,K) > r F(L,K). La función F presenta rendimientos crecientes a escala.

40 Ejemplo: Rendimientos a Escala Sea la función de producción Q = F(L,K) = L 1/5 K 4/5. Cómo son los rendimientos de escala? Solución: Sea r > 1. Entonces F(rL,rK) = (rl) 1/5 (rk) 4/5 = r (4/5+1/5) L 1/5 K 4/5 = r F(L,K). La función F presenta rendimientos constantes a escala.

41 Ejemplo: Rendimientos a Escala Sea la función de producción Q = F(L,K) =min{k,l}. Cómo son los rendimientos de escala? Solución: Sea r > 1. Entonces F(rL,rK) = min {rl,rk} = r min{l,k} = r F(L,K). La función F presenta rendimientos constantes a escala.

42 Ejemplo: Rendimientos a Escala Sea la función de producción Q = F(L,K 0 ) = f(l) = 4L 1/2. Cómo son los rendimientos de escala? Solución: Sea r > 1. Entonces f(rl) = 4 (rl) 1/2 = r 1/2 (4L 1/2 ) = r 1/2 f(l) < r f(l) La función f presenta rendimientos decrecientes a escala.

43 Transformaciones Monótonas Al contrario de lo que ocurría con las funciones de utilidad, las funciones de producción no son representaciones ordinales de la posibilidades de producción, sino representaciones cardinales. unque una función de producción G sea una transformación monótona de otra función de producción F, las tecnologías que representan son distintas.

44 Transformaciones Monótonas Por ejemplo, las funciones de producción F y G, definidas como F(L,K) = LK y G(L,K) = (LK) 1/2 representan tecnologías distintas. En particular, presentan rendimientos a escala distintos. Sea r > 1. Tenemos F(rL,rK) = r 2 LK = r 2 F(L,K) > rf(l,k) y G(rL,rK) = r(lk) 1/2 = rf(l,k). Por tanto, F presenta rendimientos crecientes a escala y G presenta rendimientos constantes a escala.

45 Transformaciones Monótonas Sin embargo, sigue siendo cierto que las transformaciones monótonas no modifican la RMST. Puede comprobarse que la RMST es la misma para las funciones de producción F y G descritas: MRTSF(L,K) = K/L; MRTSG(L,K) = (1/2)L (-1/2) K 1/2 /[(1/2)L (1/2) K (-1/2) ] = K/L.

Teoría de la producción Dante A. Urbina

Teoría de la producción Dante A. Urbina Teoría de la producción Dante A. Urbina La función de producción La función de producción representa la relación entre los factores de producción (inputs) y el producto que se puede obtener de ellos (output),

Más detalles

TIPO TEST TEMAS 5-6. Test: Producción

TIPO TEST TEMAS 5-6. Test: Producción Test: Producción TIPO TEST TEMAS 5-6 1. Una función de producción relaciona: a. La cantidad producida por el precio de los bienes. b. La cantidad producida por los costes. c. La cantidad producida con

Más detalles

Microeconomía. Rubén Sainz González Ingrid Mateo Mantecón. Tema 3. La Producción con un Factor Variable, el Coste a Corto Plazo DPTO.

Microeconomía. Rubén Sainz González Ingrid Mateo Mantecón. Tema 3. La Producción con un Factor Variable, el Coste a Corto Plazo DPTO. Rubén Sainz González Ingrid Mateo Mantecón DPTO. DE ECONOMÍA Este tema se publica bajo Licencia: Crea>ve Commons BY NC SA 4.0 ESTRUCTURA La Tecnología de Producción y Función de Producción Eficiencia Técnica

Más detalles

Capítulo 3 La demanda de trabajo

Capítulo 3 La demanda de trabajo Capítulo 3 La demanda de trabajo 3.1.- El modelo básico a corto plazo 3.2.- Demanda de trabajo a corto plazo 3.3.- Demanda de trabajo a largo plazo 3.4.- La demanda de trabajo del mercado 1 1 Introducción

Más detalles

Microeconomía Intermedia

Microeconomía Intermedia Microeconomía Intermedia Colección de preguntas tipo test y ejercicios numéricos, agrupados por temas y resueltos por Eduardo Morera Cid, Economista Colegiado. tema 08 La minimización de los costes Enunciados

Más detalles

TEMA 4. Producción MICR. Introducción a la Microeconomía,

TEMA 4. Producción MICR. Introducción a la Microeconomía, OECON NOMÍA INTRO ODUCCI IÓN A A MICR TEMA 4 Producción, José M. Pastor (coord.), M. Paz Coscollá, M. Ángeles Díaz, M. Teresa Gonzalo y Mercedes Gumbau 1 Bibliografía Capítulo 6 y pp. 252-255 del apéndice

Más detalles

TEMA 6 LA EMPRESA: PRODUCCIÓN, COSTES Y BENEFICIOS

TEMA 6 LA EMPRESA: PRODUCCIÓN, COSTES Y BENEFICIOS TEMA 6 LA EMPRESA: PRODUCCIÓN, COSTES Y BENEFICIOS 1 Contenido 1. Introducción 2. Conceptos básicos 3. La función de producción y la productividad 3.1. Concepto de función de producción 3.2. Productividad

Más detalles

Tema 1. La tecnología y los costes de producción

Tema 1. La tecnología y los costes de producción Tema 1. La tecnología y los costes de producción Andrés Enrique Romeu Santana Microeconomía 2 GADE OpenCourseWare 2012 Microeconomía (2 GADE) TEMA 1. LA PRODUCCIÓN OpenCourseWare 2012 1 / 27 Contenidos

Más detalles

Ejercicios Economía III de Costos, Maximización de Beneficios y Competencia Perfecta 1.

Ejercicios Economía III de Costos, Maximización de Beneficios y Competencia Perfecta 1. Ejercicios Economía III de Costos, Maximización de Beneficios y Competencia Perfecta 1. Costos 1. Una empresa tiene isocuantas estrictamente convexas y quiere minimizar el costo de producir q unidades.

Más detalles

LA TEORÍA DE LA EMPRESA

LA TEORÍA DE LA EMPRESA www.empresas-polar.com LA TEORÍA DE LA EMPRESA www.sidor.com www.edc-ven.com www.cantv.net EMPRESA: Unidad técnica y económica, dedicada a la transformación de insumos o factores productivos mediante la

Más detalles

MICROECONOMÍA I LM9. Universidad de Granada

MICROECONOMÍA I LM9. Universidad de Granada MICROECONOMÍA I LM9 Universidad de Granada 1 Tema cuatro La clase de hoy Tema 4: La Producción La tecnología Restricciones tecnológicas La función de producción Los rendimientos de escala Referencias:

Más detalles

ECONOMÍA I MICROECONOMÍA PRODUCCIÓN Y COSTES. El ingreso total es la cantidad que recibe una empresa por la venta de su producción.

ECONOMÍA I MICROECONOMÍA PRODUCCIÓN Y COSTES. El ingreso total es la cantidad que recibe una empresa por la venta de su producción. TEMA 4 PRODUCCIÓN Y COSTES En este tema vamos a estudiar la conducta de la empresa, lo que nos permitirá conocer mejor la curva de oferta de un mercado. También analizaremos una parte de la economía denominada

Más detalles

El Modelo Ricardiano Introducción

El Modelo Ricardiano Introducción Introducción Los países comercian entre ellos por dos razones principales: Son distintos en términos de clima, dotaciones de factores (tierra, capital, trabajo) y de tecnología. Buscan economías de escala

Más detalles

Unidad V. Ingeniería en administración. Cuestionario de la Unidad 5: Teoría de la empresa: producción y costos

Unidad V. Ingeniería en administración. Cuestionario de la Unidad 5: Teoría de la empresa: producción y costos Unidad V Catedrática: L.A. Jorge Velasco Castellanos Ingeniería en administración Cuestionario de la Unidad 5: Teoría de la empresa: producción y costos ING. EN GESTIÓN EMPRESARIAL CUESTIONARIO 1. Defina

Más detalles

Cap. 1 Funciones de Varias variables. Moisés Villena Muñoz

Cap. 1 Funciones de Varias variables. Moisés Villena Muñoz Cap. Funciones de Varias variables. Definición de Funciones de dos variables. Dominio. Grafica..4 Curvas de nivel. Derivadas Parciales.6 Funciones Homogéneas.7 Funciones Nomotéticas.8 Diferencial Total.9

Más detalles

CURSOS CENEVAL TOLUCA

CURSOS CENEVAL TOLUCA Precálculo Propiedades de los números reales Los números que se utilizan en el álgebra son los números reales. Hay un número real en cada punto de la recta numérica. Los números reales se dividen en números

Más detalles

CONCAVIDAD. Supongamos que tenemos la siguiente información, referente a una curva derivable: Cómo la graficaríamos?

CONCAVIDAD. Supongamos que tenemos la siguiente información, referente a una curva derivable: Cómo la graficaríamos? CAPÍTULO 14 CONCAVIDAD Supongamos que tenemos la siguiente información, referente a una curva derivable: Intervalo Signo de f F (-00,3) + Creciente (3,8) - Decreciente (8, + ) + Creciente Cómo la graficaríamos?

Más detalles

Introducción FRONTERA DE POSIBILIDADES DE PRODUCCIÓN TEMA 2

Introducción FRONTERA DE POSIBILIDADES DE PRODUCCIÓN TEMA 2 TEMA 2 Introducción FRONTERA DE POSIBILIDADES DE PRODUCCIÓN Introducción Recordemos que la economía es la ciencia que estudia cómo la sociedad produce y distribuye bienes y servicios para satisfacer los

Más detalles

Frontera de posibilidades de producción y coste de oportunidad

Frontera de posibilidades de producción y coste de oportunidad Frontera de posibilidades de producción y coste de oportunidad ENUNCIADO PROBLEMA 3 Supongamos la siguiente tabla donde se resumen las posibilidades de producción de una economía que produce dos bienes:

Más detalles

TEMA 4: DERIVADAS. En símbolos, la pendiente de la curva en P = lim Q P (pendiente de P Q).

TEMA 4: DERIVADAS. En símbolos, la pendiente de la curva en P = lim Q P (pendiente de P Q). TEMA 4: DERIVADAS 1. La derivada de una función. Reglas de derivación 1.1. La pendiente de una curva. La pendiente de una curva en un punto P es una medida de la inclinación de la curva en ese punto. Si

Más detalles

PRECIOS, RENTA Y CANTIDADES DEMANDADAS

PRECIOS, RENTA Y CANTIDADES DEMANDADAS PRECIOS, RENTA Y CANTIDADES DEMANDADAS LA UTILIDAD -Concepto. -Tipo: utilidad total y utilidad marginal. -Ley o principio de utilidad marginal decreciente -Relación entre utilidad y precio. -Regla del

Más detalles

Tabla de Derivadas. Función Derivada Función Derivada. f (x) n+1. f (x) y = f (x) y = ln x. y = cotg f (x) y = ( 1 cotg 2 f (x)) f (x) = f (x)

Tabla de Derivadas. Función Derivada Función Derivada. f (x) n+1. f (x) y = f (x) y = ln x. y = cotg f (x) y = ( 1 cotg 2 f (x)) f (x) = f (x) Matemáticas aplicadas a las CCSS - Derivadas Tabla de Derivadas Función Derivada Función Derivada y k y 0 y y y y y f ) y f ) f ) y n y n n y f ) n y n f ) n f ) y y n y y f ) y n n+ y f ) n y f ) f )

Más detalles

El cuerpo de los números reales

El cuerpo de los números reales Capítulo 1 El cuerpo de los números reales 1.1. Introducción Existen diversos enfoques para introducir los números reales: uno de ellos parte de los números naturales 1, 2, 3,... utilizándolos para construir

Más detalles

Economía II - Guía de Trabajos Prácticos Unidad I: Teoría del Consumidor

Economía II - Guía de Trabajos Prácticos Unidad I: Teoría del Consumidor Economía II - Guía de Trabajos Prácticos Unidad I: Teoría del Consumidor Repaso instrumentos básicos de Economía I 1- Supongamos que un incremento del 5% en el precio de una excursión a la Isla Victoria

Más detalles

Unidad II Teoría del consumidor y del Productor

Unidad II Teoría del consumidor y del Productor Unidad II Teoría del consumidor y del Productor Teoría del consumidor Estudiaremos el comportamiento del consumidor mediante modelos de comportamiento individual, lo que nos permitirá comprender cómo se

Más detalles

3.3 Funciones crecientes y decrecientes y el criterio de la primera derivada

3.3 Funciones crecientes y decrecientes y el criterio de la primera derivada SECCIÓN. Funciones crecientes decrecientes el criterio de la primera derivada 79. Funciones crecientes decrecientes el criterio de la primera derivada Determinar los intervalos sobre los cuales una función

Más detalles

PRÁCTICA 5. Para ver donde se maximiza esta función hay que ver donde se anula la primera derivada respecto al precio. R

PRÁCTICA 5. Para ver donde se maximiza esta función hay que ver donde se anula la primera derivada respecto al precio. R .- La función de demanda de un bien viene dada por. Se pide: a) Demuestre matemáticamente para que cantidad se obtiene el máximo de los ingresos totales. El ingreso total es la cantidad de producto por

Más detalles

Economía del Bienestar: Un análisis normativo

Economía del Bienestar: Un análisis normativo Economía del Bienestar: Un análisis normativo Curso: Política Económica Maestría en Economía Facultad de Ciencias Económicas y de Administración Universidad de la República Curso 2014 1 La Economía del

Más detalles

5. INTEGRALES MULTIPLES

5. INTEGRALES MULTIPLES 5. INTEGRALES MULTIPLES INDICE 5 5.. Integrales iteradas. 5.. Definición de integral doble: áreas y volúmenes..3 5.3. Integral doble en coordenadas polares 5 5.4. Aplicaciones de la integral doble (geométricas

Más detalles

TRA NSFORMACIO N ES LIN EA LES

TRA NSFORMACIO N ES LIN EA LES TRA NSFORMACIO N ES LIN EA LES C o m p uta c i ó n G r á fica Tipos de Datos Geométricos T Un punto se puede representar con tres números reales [x,y,z] que llamaremos vector coordenado. Los números especifican

Más detalles

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca Ejercicio: 4. 4. El intervalo abierto (,) es el conjunto de los números reales que verifican: a). b) < . - Intervalo abierto (a,b) al conjunto de los números reales, a < < b. 4. El intervalo

Más detalles

Definición de Funciones MATE 3171

Definición de Funciones MATE 3171 Definición de Funciones MATE 3171 Función Una función, f, es una regla de correspondencia entre dos conjuntos, que asigna a cada elemento x de D exactamente un elemento de E : x 1 x 2 x 3 y 2 y 1 Terminología

Más detalles

Tema 4 LA PRODUCCIÓN. Pindyck, R. y Rubinfeld, D. Tema 18 Varian, H. Tema 6 MICROECONOMÍA. VISIÓN PANORÁMICA.

Tema 4 LA PRODUCCIÓN. Pindyck, R. y Rubinfeld, D. Tema 18 Varian, H. Tema 6 MICROECONOMÍA. VISIÓN PANORÁMICA. Tema 4 A PRODUCCIÓN Pindyck, R. y Rubinfeld, D. Tema 18 Varian, H. Tema 6 Página 2 MICROECONOMÍA. VISIÓN PANORÁMICA. Parte I. El comportamiento del consumidor. Teoría de la demanda Tema 2. a conducta del

Más detalles

Parte I. 1. (V/F) Dos curvas de indiferencia de un consumidor solo pueden cortarse en un punto.

Parte I. 1. (V/F) Dos curvas de indiferencia de un consumidor solo pueden cortarse en un punto. Estimados estudiantes: esta es una guía que pretende ayudarlos a estudiar. Si la trabajan a conciencia, con cada pregunta o ejercicio podrán reforzar conceptos y les ayudará a comprender el tema. Los trabajos

Más detalles

Herramientas digitales de auto-aprendizaje para Matemáticas

Herramientas digitales de auto-aprendizaje para Matemáticas real de con Herramientas digitales de auto-aprendizaje para Matemáticas, Grupo de Innovación Didáctica Departamento de Matemáticas Universidad de Extremadura real de con Índice real de con real de con.

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grado en Química Bloque Funciones de una variable Sección.5: Aplicaciones de la derivada. Máximos y mínimos (absolutos) de una función. Sea f una función definida en un conjunto I que contiene un punto

Más detalles

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES 1. Sea f : (0, + ) definida como f () = Ln a) Probar que la función derivada f es decreciente en todo su dominio. b) Determinar los intervalos de crecimiento

Más detalles

Profesor: Rafa González Jiménez. Instituto Santa Eulalia ÍNDICE

Profesor: Rafa González Jiménez. Instituto Santa Eulalia ÍNDICE TEMA 5: DERIVADAS. APLICACIONES. ÍNDICE 5..- Derivada de una función en un punto. 5...- Tasa de variación media. Interpretación geométrica. 5..2.- Tasa de variación instantánea. Derivada de una función

Más detalles

Funciones de varias variables

Funciones de varias variables Funciones de varias variables F. Alvarez y H. Lugo Universidad Complutense de Madrid 23 Noviembre, 2011 Campo escalar Denominamos campo escalar a una función f : R n R, es decir, una función cuyo dominio

Más detalles

Distribuciones de Probabilidad Para Variables Aleatorias Continuas

Distribuciones de Probabilidad Para Variables Aleatorias Continuas Distribuciones de Probabilidad Para Variables Aleatorias Continuas Departamento de Estadística-FACES-ULA 20 de Diciembre de 2013 Introducción Recordemos la definición de Variable Aleatoria Continua. Variable

Más detalles

Ecuación de la Recta

Ecuación de la Recta PreUnAB Clase # 10 Agosto 2014 Forma La ecuación de la recta tiene la forma: y = mx + n con m y n constantes reales, m 0 Elementos de la ecuación m se denomina pendiente de la recta. n se denomina intercepto

Más detalles

LA FUNCIÓN DE PRODUCCIÓN: DEFINICIÓN Y FACTORES PRODUCTIVOS COSTES: DEFINICIONES Y RELACIONES (CORTO Y LARGO PLAZO)

LA FUNCIÓN DE PRODUCCIÓN: DEFINICIÓN Y FACTORES PRODUCTIVOS COSTES: DEFINICIONES Y RELACIONES (CORTO Y LARGO PLAZO) TEORÍA DE LA PRODUCCIÓN INTRODUCCIÓN LA EMPRESA: NATURALEZA Y TIPOS LA FUNCIÓN DE PRODUCCIÓN: DEFINICIÓN Y FACTORES PRODUCTIVOS PRODUCTO MEDIO Y MARGINAL: DEFINICIÓN Y RELACIÓN COSTES: DEFINICIONES Y RELACIONES

Más detalles

EL PUNTO DE EQUILIBRIO

EL PUNTO DE EQUILIBRIO EL PUNTO DE EQUILIBRIO El punto de equilibrio sirve para determinar el volumen mínimo de ventas que la empresa debe realizar para no perder, ni ganar. En el punto de equilibrio de un negocio las ventas

Más detalles

LA MAXIMIZACION DE BENEFICIOS CON UN INSUMO VARIABLE

LA MAXIMIZACION DE BENEFICIOS CON UN INSUMO VARIABLE LA FUNCION DE PRODUCCION Y LA MAXIMIZACION DE BENEFICIOS lorenzo castro gómez 1 LA MAXIMIZACION DE BENEFICIOS CON UN INSUMO VARIABLE El objeto del análisis insumo-producto es determinar la cantidad óptima

Más detalles

Ejemplo Traza la gráfica de los puntos: ( 5, 4), (3, 2), ( 2, 0), ( 1, 3), (0, 4) y (5, 1) en el plano cartesiano.

Ejemplo Traza la gráfica de los puntos: ( 5, 4), (3, 2), ( 2, 0), ( 1, 3), (0, 4) y (5, 1) en el plano cartesiano. Plano cartesiano El plano cartesiano se forma con dos rectas perpendiculares, cuyo punto de intersección se denomina origen. La recta horizontal recibe el nombre de eje X o eje de las abscisas y la recta

Más detalles

TEMA 2: DERIVADA DE UNA FUNCIÓN

TEMA 2: DERIVADA DE UNA FUNCIÓN TEMA : DERIVADA DE UNA FUNCIÓN Tasa de variación Dada una función y = f(x), se define la tasa de variación en el intervalo [a, a +h] como: f(a + h) f(a) f(a+h) f(a) y se define la tasa de variación media

Más detalles

PARTE IV LAS DIFERENTES ESTRUCTURAS DEL MERCADO. Tema 5 La Competencia Perfecta

PARTE IV LAS DIFERENTES ESTRUCTURAS DEL MERCADO. Tema 5 La Competencia Perfecta PARTE IV LAS DIFERENTES ESTRUCTURAS DEL MERCADO Tema 5 1 1-. Introducción Tema 5 ESQUEMA 2-. como Caso Límite 3-. La Decisión de Producción de la Empresa Objetivo de la Empresa La Demanda Individual de

Más detalles

Matemáticas Febrero 2013 Modelo A

Matemáticas Febrero 2013 Modelo A Matemáticas Febrero 0 Modelo A. Calcular el rango de 0 0 0. 0 a) b) c). Cuál es el cociente de dividir P(x) = x x + 9 entre Q(x) = x +? a) x x + x 6. b) x + x + x + 6. c) x x + 5x 0.. Diga cuál de las

Más detalles

Curso Propedéutico de Cálculo Sesión 2: Límites y Continuidad

Curso Propedéutico de Cálculo Sesión 2: Límites y Continuidad y Laterales Curso Propedéutico de Cálculo Sesión 2: y Joaquín Ortega Sánchez Centro de Investigación en Matemáticas, CIMAT Guanajuato, Gto., Mexico y Esquema Laterales 1 Laterales 2 y Esquema Laterales

Más detalles

INSTITUTO TECNOLÓGICO AUTÓNOMO DE MÉXICO Economía III (Eco-11103) Elección ocio consumo y la oferta de trabajo

INSTITUTO TECNOLÓGICO AUTÓNOMO DE MÉXICO Economía III (Eco-11103) Elección ocio consumo y la oferta de trabajo INSTITUTO TECNOÓGICO AUTÓNOMO DE MÉXICO Economía III (Eco-11103) Elección ocio consumo y la oferta de trabajo Ricard Torres Índice 1 Conjunto presupuestal 1 2 Función de utilidad u(l, c) = lc (Cobb-Douglas)

Más detalles

MICROECONOMÍA Grado en Economía Universitat de València Prof. Carlos Peraita 1 TEMA 4. El coste de producción

MICROECONOMÍA Grado en Economía Universitat de València Prof. Carlos Peraita 1 TEMA 4. El coste de producción MICROECONOMÍA Grado en Economía Universitat de València Prof. Carlos Peraita 1 TEMA 4 El coste de producción MICROECONOMÍA Grado en Economía Universitat de València Prof. Carlos Peraita 2 TEMA 4 4.1 La

Más detalles

Matrices escalonadas y escalonadas reducidas

Matrices escalonadas y escalonadas reducidas Matrices escalonadas y escalonadas reducidas Objetivos. Estudiar las definiciones formales de matrices escalonadas y escalonadas reducidas. Comprender qué importancia tienen estas matrices para resolver

Más detalles

Tema 1. Cálculo diferencial

Tema 1. Cálculo diferencial Tema 1. Cálculo diferencial 1 / 57 Una función es una herramienta mediante la que expresamos la relación entre una causa (variable independiente) y un efecto (variable dependiente). Las funciones nos permiten

Más detalles

Posibilidades, preferencias y elecciones

Posibilidades, preferencias y elecciones ECONOMÍA Posibilidades, preferencias y elecciones M. en C. Eduardo Bustos Farías Objetivos de aprendizaje Calcular y representar en forma gráfica la restricción presupuestal de los individuos Determinar

Más detalles

Colegio Universitario Boston. Funciones

Colegio Universitario Boston. Funciones 70 Concepto de Función Una función es una correspondencia entre dos conjuntos, tal que relaciona, a cada elemento del conjunto A con un único elemento del conjunto Para indicar que se ha establecido una

Más detalles

Sucesiones y series de números reales

Sucesiones y series de números reales Capítulo 2 Sucesiones y series de números reales 2.. Sucesiones de números reales 2... Introducción Definición 2... Llamamos sucesión de números reales a una función f : N R, n f(n) = x n. Habitualmente

Más detalles

BLOQUE 4. CÁLCULO DIFERENCIAL DE FUNCIONES REALES DE UNA VARIABLE. ESTUDIO DE LA GRÁFICA DE UNA FUNCIÓN

BLOQUE 4. CÁLCULO DIFERENCIAL DE FUNCIONES REALES DE UNA VARIABLE. ESTUDIO DE LA GRÁFICA DE UNA FUNCIÓN BLOQUE 4. CÁLCULO DIFERENCIAL DE FUNCIONES REALES DE UNA VARIABLE. ESTUDIO DE LA GRÁFICA DE UNA FUNCIÓN Crecimiento y decrecimiento. Extremos absolutos y relativos. Concavidad y convexidad. Asíntotas.

Más detalles

DERIVADAS. TÉCNICAS DE DERIVACIÓN

DERIVADAS. TÉCNICAS DE DERIVACIÓN DERIVADAS. TÉCNICAS DE DERIVACIÓN Página 5 REFLEXIONA Y RESUELVE Tangentes a una curva y f () 5 5 9 4 Halla, mirando la gráfica y las rectas trazadas, f'(), f'(9) y f'(4). f'() 0; f'(9) ; f'(4) 4 Di otros

Más detalles

Ejercicios Resueltos de Derivadas y sus aplicaciones:

Ejercicios Resueltos de Derivadas y sus aplicaciones: Ejercicios Resueltos de Derivadas y sus aplicaciones: 1.- Sea la curva paramétrica definida por, con. a) Halle. b) Para qué valor(es) de, la curva tiene recta tangente vertical? 2.- Halle para : a) b)

Más detalles

CANTIDAD A `PRODUCIR = FUNCION DE LA COMBINACION OPTIMA DE FACTORES DE LA PRODUCCION

CANTIDAD A `PRODUCIR = FUNCION DE LA COMBINACION OPTIMA DE FACTORES DE LA PRODUCCION PRODUCCION Y COSTOS DEFINICION DE EMPRESA Las empresas son agentes económicos dedicados a producir una serie de bienes y servicios en base a una serie de insumos o inputs intermedios y la utilización de

Más detalles

Coordenadas polares en el plano. Coordenadas ciĺındricas y esféricas en el espacio. Coordenadas... Coordenadas... Coordenadas...

Coordenadas polares en el plano. Coordenadas ciĺındricas y esféricas en el espacio. Coordenadas... Coordenadas... Coordenadas... En el estudio de los conjuntos y las funciones es fundamental el sistema que se utilize para representar los puntos. Estamos acostumbrados a utilizar la estructura de afín o de vectorial de R n, utilizando

Más detalles

Microeconomia Avanzada 1

Microeconomia Avanzada 1 Microeconomia Avanzada 1 Sjaak Hurkens 2011 Sjaak Hurkens Microeconomia avanzada 1 1/53 Teoría de la Empresa producción costes conducta de la empresa Sjaak Hurkens Microeconomia avanzada 1 2/53 Producción

Más detalles

Clase 3: Modelo de Dixit-Stiglitz (1977)

Clase 3: Modelo de Dixit-Stiglitz (1977) Clase 3: (1977) Hamilton Galindo Macrodinámica II Junio - Agosto 2015 Hamilton Galindo Clase 3: (1977) Outline 1 2 3 4 Hamilton Galindo Clase 3: (1977) Competencia monopolistica I Perspectiva historica

Más detalles

Tema 1 LA CONDUCTA DE LOS CONSUMIDORES

Tema 1 LA CONDUCTA DE LOS CONSUMIDORES Tema 1 LA CONDUCTA DE LOS CONSUMIDORES Tema 1: Índice y Bibliografía Índice 1.1. Las preferencias de los consumidores 1.2. Las restricciones presupuestarias 1.3. La elección de los consumidores 1.4. Los

Más detalles

CÁLCULO DIFERENCIAL Muestras de examen

CÁLCULO DIFERENCIAL Muestras de examen CÁLCULO DIFERENCIAL Muestras de examen Febrero 2012 T1. [2] Demostrar que la imagen continua de un conjunto compacto es compacto. T2. [2.5] Definir la diferencial de una función en un punto y demostrar

Más detalles

TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE

TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE PROBLEMAS RESUELTOS + Dada F() =, escriba la ecuación de la secante a F que une los puntos (, F( )) y 4 (, F()). Eiste un punto c en el intervalo [, ]

Más detalles

Líneas y Planos en el Espacio

Líneas y Planos en el Espacio Líneas y Planos en el Espacio Departamento de Matemáticas, CCIR/ITESM de enero de Índice..Introducción.................................................Ecuación paramétrica de la recta.....................................ecuación

Más detalles

Tema 5: Sistemas de Ecuaciones Lineales

Tema 5: Sistemas de Ecuaciones Lineales Tema 5: Sistemas de Ecuaciones Lineales Eva Ascarza-Mondragón Helio Catalán-Mogorrón Manuel Vega-Gordillo Índice 1 Definición 3 2 Solución de un sistema de ecuaciones lineales 4 21 Tipos de sistemas ecuaciones

Más detalles

Tema 4. La producción

Tema 4. La producción Tema 4 La producción Epígrafes La tecnología de la producción La producción con un factor variable (trabajo) Las isocuantas La producción con dos factores variables Los rendimientos a escala Cap. 6 P-R

Más detalles

CAPÍTULO 4: DERIVADAS DE ORDEN SUPERIOR. En este capítulo D denota un subconjunto abierto de R n.

CAPÍTULO 4: DERIVADAS DE ORDEN SUPERIOR. En este capítulo D denota un subconjunto abierto de R n. April 15, 2009 En este capítulo D denota un subconjunto abierto de R n. 1. Introducción Definición 1.1. Dada una aplicación f : D R, definimos la derivada parcial segunda de f como D ij f = 2 f = ( ) x

Más detalles

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos Tema 3: Repaso de Álgebra Lineal Parte I Virginia Mazzone Contenidos Vectores y Matrices Bases y Ortonormailizaciòn Norma de Vectores Ecuaciones Lineales Algenraicas Ejercicios Vectores y Matrices Los

Más detalles

En este capítulo obtendremos los resultados básicos del cálculo diferencial para funciones reales definidas sobre R o sobre intervalos.

En este capítulo obtendremos los resultados básicos del cálculo diferencial para funciones reales definidas sobre R o sobre intervalos. Capítulo 6 Derivadas 61 Introducción En este capítulo obtendremos los resultados básicos del cálculo diferencial para funciones reales definidas sobre R o sobre intervalos Definición 61 Sea I R, I, f :

Más detalles

Microeconomía Básica

Microeconomía Básica Microeconomía Básica Colección de 240 preguntas tipo test, resueltas por Eduardo Morera Cid, Economista Colegiado. Cada sesión constará de una batería de 20 preguntas tipo test y las respuestas a las propuestas

Más detalles

Unidad 1. Las fracciones.

Unidad 1. Las fracciones. Unidad 1. Las fracciones. Ubicación Curricular en España: 4º, 5º y 6º Primaria, 1º, 2º y 3º ESO. Objetos de aprendizaje. 1.1. Concepto de fracción. Identificar los términos de una fracción. Escribir y

Más detalles

Universidad Icesi Departamento de Matemáticas y Estadística

Universidad Icesi Departamento de Matemáticas y Estadística Universidad Icesi Departamento de Matemáticas y Estadística Solución del primer eamen parcial del curso Cálculo de una variable Grupos: Uno y Cinco Período: Inicial del año 00 Prof: Rubén D. Nieto C. PUNTO.

Más detalles

DERIVADAS PARCIALES. El conjunto D es llamado el dominio de la función y el conjunto de todos los valores de la función es el rango de la función.

DERIVADAS PARCIALES. El conjunto D es llamado el dominio de la función y el conjunto de todos los valores de la función es el rango de la función. Funciones de dos o más Variables DERIVADAS PARCIALES Existen magnitudes que dependen de dos o más variables independientes por ejemplo el área del rectángulo depende de la longitud de cada uno de sus lados,

Más detalles

UNIDAD DIDÁCTICA 5: Geometría analítica del plano

UNIDAD DIDÁCTICA 5: Geometría analítica del plano UNIDAD DIDÁCTICA 5: Geometría analítica del plano 1. ÍNDICE 1. Sistemas de referencia y coordenadas puntuales 2. Distancia entre dos puntos del plano 3. Coordenadas del punto medio de un segmento 4. La

Más detalles

Microeconomía Intermedia

Microeconomía Intermedia Microeconomía Intermedia Colección de preguntas tipo test y ejercicios numéricos, agrupados por temas y resueltos por Eduardo Morera Cid, Economista Colegiado. Tema 10 La maximización del beneficio Enunciados

Más detalles

UNIDAD II FUNCIONES. Ing. Ronny Altuve Esp.

UNIDAD II FUNCIONES. Ing. Ronny Altuve Esp. República Bolivariana de Venezuela Universidad Alonso de Ojeda Administración Mención Gerencia y Mercadeo UNIDAD II FUNCIONES Ing. Ronny Altuve Esp. Ciudad Ojeda, Septiembre de 2015 Función Universidad

Más detalles

entonces las derivadas laterales existen y son iguales. y vale lo mismo. Si existen las derivadas laterales y son iguales, entonces existe f (a)

entonces las derivadas laterales existen y son iguales. y vale lo mismo. Si existen las derivadas laterales y son iguales, entonces existe f (a) DERIVADAS. TEMA 2. BLOQUE 1 1.- DERIVADA DE UNA FUNCIÓN EN UN PUNTO Se llama derivada de la función y = f ( en el punto de abscisa x = a al límite f ( f ( a f ( a = lím x a x a Si existe f (a entonces

Más detalles

MICROECONOMÍA II. PRÁCTICA TEMA 5: El Modelo de Equilibrio General con Intercambio Puro

MICROECONOMÍA II. PRÁCTICA TEMA 5: El Modelo de Equilibrio General con Intercambio Puro MICROECONOMÍA II Problema 1 PRÁCTICA TEMA 5: El Modelo de Equilibrio General con Intercambio Puro PRIMERA PARTE: La Caja de Edgeworth y la Curva de Contrato El conjunto de asignaciones eficientes está

Más detalles

Funciones y gráficas. 3º de ESO

Funciones y gráficas. 3º de ESO Funciones y gráficas 3º de ESO Funciones Una función es una correspondencia entre dos conjuntos numéricos que asocia a cada valor,, del primer conjunto un único valor, y, del segundo. La variable variable

Más detalles

GEOMETRÍA ANALÍTICA DEL PLANO

GEOMETRÍA ANALÍTICA DEL PLANO GEOMETRÍA ANALÍTICA DEL PLANO 1 UNIDAD DIDÁCTICA 5: Geometría analítica del plano 1. ÍNDICE 1. Sistemas de referencia y coordenadas puntuales 2. Distancia entre dos puntos del plano 3. Coordenadas del

Más detalles

6. Optimización de funciones de una variable.

6. Optimización de funciones de una variable. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. 6. Optimización de funciones de una variable. En esta sección estudiaremos cómo calcular los extremos absolutos (si estos existen) de una función suficientemente

Más detalles

Tema 06: Derivación implícita, vector gradiente y derivadas direccionales

Tema 06: Derivación implícita, vector gradiente y derivadas direccionales Tema 06: Derivación implícita, vector gradiente y derivadas direccionales Juan Ignacio Del Valle Gamboa Sede de Guanacaste Universidad de Costa Rica Ciclo I - 2014 MA-1003 Cálculo III (UCR) Derivadas implícitas

Más detalles

Explorando la ecuación de la recta pendiente intercepto

Explorando la ecuación de la recta pendiente intercepto Explorando la ecuación de la recta pendiente intercepto Realiza las siguientes actividades, mientras trabajas con el tutorial. 1. Los puntos que están en la misma recta se dice que son. 2. Describe el

Más detalles

La conducta del consumidor y las preferencias

La conducta del consumidor y las preferencias La conducta del consumidor y las preferencias Microeconomía Douglas Ramírez La conducta del consumidor Hemos afirmado que los consumidores eligen según el principio de conveniencia y según el principio

Más detalles

Los costos: Introducción Los costos: a la

Los costos: Introducción Los costos: a la Los costos: Conceptos Generals. Su Clasificación Fijos Costos Corto Plazo Largo Plazo Unitarios Unitarios Variables Medios Marginales Variables Medios Marginales Fijos Variables Variables COSTOS Introducción

Más detalles

Funciones de varias variables.

Funciones de varias variables. Funciones de varias variables. Definición. Hasta ahora se han estudiado funciones de la forma y = f (x), f :D Estas funciones recibían el nombre de funciones reales de variable real ya que su valor y dependía

Más detalles

Anexo C. Introducción a las series de potencias. Series de potencias

Anexo C. Introducción a las series de potencias. Series de potencias Anexo C Introducción a las series de potencias Este apéndice tiene como objetivo repasar los conceptos relativos a las series de potencias y al desarrollo de una función ne serie de potencias en torno

Más detalles

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN May 4, 2012 1. Optimización Sin Restricciones En toda esta sección D denota un subconjunto abierto de R n. 1.1. Condiciones Necesarias de Primer Orden. Proposición 1.1. Sea f : D R diferenciable. Si p

Más detalles

Límites y continuidad

Límites y continuidad Límites y continuidad.. Límites El ite por la izquierda de una función f en un punto 0, denotado como 0 f() es el valor al que se aproima f() cuando se acerca hacia 0 por la izquierda. De igual forma,

Más detalles

Decimos que la superficie esférica es el conjunto de los puntos del espacio tridimensional que equidistan de un punto fijo llamado centro.

Decimos que la superficie esférica es el conjunto de los puntos del espacio tridimensional que equidistan de un punto fijo llamado centro. 8 LAS SUPERFICES COMO LUGARES GEOMÉTRICOS Como hemos dicho en la página del presente capítulo, los planos, la superficie esférica, los cilindros los conos pueden tratarse con relativa facilidad en el espacio

Más detalles

CAPÍTULO. Conceptos básicos

CAPÍTULO. Conceptos básicos CAPÍTULO 1 Conceptos básicos 1.3 Soluciones de ecuaciones diferenciales 1.3.1 Soluciones de una ecuación Ejemplo 1.3.1 Resolver la ecuación: D 0. H Resolver esta ecuación significa encontrar todos los

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #16. f : A! B x 7! y = f(x):

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #16. f : A! B x 7! y = f(x): MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #16 Función Sean A y B conjuntos. Una función f de A en B es una regla que asigna a cada elemento x 2 A exactamante un elemento

Más detalles

Derivadas. Contenido Introducción. ( α) Definición de Derivada. (α) Pendiente de la recta tangente. (α) Funciones diferenciables.

Derivadas. Contenido Introducción. ( α) Definición de Derivada. (α) Pendiente de la recta tangente. (α) Funciones diferenciables. Derivadas. Contenido 1. Introducción. (α) 2. Definición de Derivada. (α) 3. Pendiente de la recta tangente. (α) 4. Funciones diferenciables. (α) 5. Función derivada. (α) 6. Propiedades de la derivada.

Más detalles

Universidad Carlos III de Madrid Mayo de 2011. Microeconomía. 1 2 3 4 5 Calif.

Universidad Carlos III de Madrid Mayo de 2011. Microeconomía. 1 2 3 4 5 Calif. Universidad Carlos III de Madrid Mayo de 11 Microeconomía Nombre: Grupo: 1 3 4 Calif. Dispone de horas y 4 minutos. La puntuación de cada apartado, sobre un total de 1 puntos, se indica entre paréntesis.

Más detalles

TEORÍA DE LA EMPRESA. ADOLFO GARCÍA DE LA SIENRA Instituto de Filosofía Facultad de Economía Universidad Veracruzana

TEORÍA DE LA EMPRESA. ADOLFO GARCÍA DE LA SIENRA Instituto de Filosofía Facultad de Economía Universidad Veracruzana TEORÍA DE LA EMPRESA ADOLFO GARCÍA DE LA SIENRA Instituto de Filosofía Facultad de Economía Universidad Veracruzana asienrag@gmail.com. Conjuntos y funciones de producción El conjunto de posibilidades

Más detalles

MACROECONOMÍA DE LAS ECONOMÍAS ABIERTAS MODELO AHORRO INVERSIÓN Y TIPO DE CAMBIO REAL

MACROECONOMÍA DE LAS ECONOMÍAS ABIERTAS MODELO AHORRO INVERSIÓN Y TIPO DE CAMBIO REAL 1 MACROECONOMÍA DE LAS ECONOMÍAS ABIERTAS MODELO AHORRO INVERSIÓN Y TIPO DE CAMBIO REAL En el presente apartado, se recurre al modelo de ahorro inversión para explicar, a través del planteamiento de casos

Más detalles

1. DIFERENCIABILIDAD EN VARIAS VARIABLES

1. DIFERENCIABILIDAD EN VARIAS VARIABLES 1 1. DIFERENCIABILIDAD EN VARIAS VARIABLES 1.1. DERIVADAS DIRECCIONALES Y PARCIALES Definición 1.1. Sea f : R n R, ā R n y v R n. Se define la derivada direccional de f en ā y en la dirección de v como:

Más detalles
Sitemap