COSTTO TOTAL: 15 (8)+20(9) +10(14)+20(6)+30(16)= 1250


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "10 9 35-15-0 15 12 13 7 50-20-0 20 14 COSTTO TOTAL: 15 (8)+20(9) +10(14)+20(6)+30(16)= 1250"

Transcripción

1 EL PROBLEMA DE TRANSPORTE 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y 3 pueden satisfacer 3, 0 y 40 millones de [kwh] respectivamente. El valor máximo de consumo ocurre a las 2 PM y es de 4,, y millones de [kwh] en las ciudades 1, 2, 3 y 4 respectivament e. El costo de enviar 1 [kwh] depende de la Desde Hacia Oferta Ciudad 1 Ciudad 2 Ciudad 3 Ciudad 4 (Millones kwh) Planta Planta Planta Demanda (Millones KWh) 4 distancia que deba recorrer la energía. La siguiente tabla muestra los costos de envío unitario desde cada planta a cada ciudad. Formule un modelo de programación lineal que permita minimizar los costos de satisfacción de la demanda máxima en todas las ciudades. Oferta DEMANDA /12(Equilibrio) COSTTO TOTAL: 1 (8)+(9) +(14)+(6)+(16)= Una empresa dedicada a la fabricación de componentes de ordenador tiene dos fábricas que producen, respectivamente, 800 y 100 piezas mensuales. Estas piezas han de ser transportadas a tres tiendas que necesitan 00, 700 y 600 piezas, respectivamente. Los costes de transporte, en pesetas por pieza son los que aparecen en la tabla adjunta. Cómo debe organizarse el transporte para que el coste sea mínimo? Tienda A Tienda B Tienda C Fabrica I Fabrica II DEMANDA /20 (Equilibrio) COSTO TOTAL: 0(3)+800(2)+700(2)+600(1)=2400

2 3. Una empresa dedicada a la distribución de aceite de oliva debe enviar toneladas a Madrid, 40 a Barcelona, a Valencia y a Bilbao. Esta empresa suministra en Badajoz, Cáceres y Jaén, cuyas disponibilidades son de 3, 2 y toneladas, respectivamente. Los costes en euros de envió de una tonelada de los lugares de promoción a los destinos son : Por cada tonelada no recibida en los puntos de destino, la empresa tiene unas pérdidas de, 8, 6 y 4 euros, respectivamente. La empresa desea minimizar el coste total de la distribución de la mercancía. Cómo podría hacerse la distribución optima? Madrid Barcelona Valencia Bilbao Badajoz 1 9 Cáceres Jaén 1 2 DEMANDA /0(Equilibrio con oferente ficticio) COSTO TOTAL: 2()+(6)+(7)+()+(0)+(9) 9 4. Un fabricante de chips tiene que planificar la producción para los próximos tres meses de tres diferentes chips (A,B,C). Los costes de producción por chip son de A, 6 céntimos en los primeros meses y de 9 céntimos en el tercero; de B, 8 los dos primeros y 11 el último mes; y de C, 6 céntimos los dos primeros meses y 8 el ultimo. El departamento de marketing ha llevado a cabo un estudio estimado que la demanda en los tres meses ser la de 0, 400 y 00 unidades, respectivamente. La fábrica puede producir 400 unidades de cada tipo de chip. Cómo se puede optimizar la distribución de la fabricación de los chips en estos tres meses? A B C DEMANDA / (EQUILIBRIO)

3 COSTO TOTAL: 0(6)+0(6)+400(6)+400(11)=90. Una empresa de componentes informáticos puede comprar discos duros a tres proveedores y su objetivo es minimizar el coste total de la compra. Los proveedores disponen de 00, 00 y 00 discos respectivamente. La empresa necesita los discos en tres cadenas de montaje sitas en tres localidades distintas. Dichas cadenas requieren 100, 00 y 200 discos respectivamente. Los precios en cientos de euros por cada disco entregado a cada cadena son como siguen: Calcular la solución óptima. Proveedor Cadena Demanda /000 (EQUILIBRIO) Costo total: 100(3)+00(11)+00(2)+100(2),00 6. Una fábrica de vidrio cuenta con 40 toneladas de arena tipo A y toneladas de arena tipo B para utilizar este mes. La arena se funde para fabricar vidrio óptico, vidrio para envases o vidrio para ventanas. La compañía tiene órdenes por toneladas de vidrios óptico, 2 toneladas de vidrio para envases y 2 toneladas de vidrio para ventanas. Los costos para producir una tonelada de cada tipo de vidrio a partir de cada tipo de arena están a continuación.resuelva el problema formulándolo como uno de transporte. DEMAND /70(EQUILIBRIO CON OFERENTE FICTICIO) Costo total: (8)+(0)+2(3)+1() 2

4 7. Cierta empresa tiene dos plantas y tres distribuidores. En la siguiente tabla se muestran los costos de transporte de cada planta a cada centro de distribución, junto con las ofertas disponibles de cada planta y los requerimientos de cada distribuidor. Resuelve el problema formulándolo como uno de transporte. Distribuidor Planta A B C Oferta J K Demanda /60 COSTO TOTAL: (8)+1(90)+()+(7)= Una empresa de camiones envía camiones cargados de grano desde tres silos a cuatro molinos. La oferta (en camiones cargados) y la demanda (también en camiones cargados), junto con los costes de transporte por carga de camión en las diferentes rutas se resumen en el modelo de transporte siguiente. Los costos de transporte por unidad, cij, son en cientos de soles. Determinar el costo mínimo del programa de envió entre los silos y los molinos. D D D Silos Molinos COSTO TOTAL: =24 9. Una compañía fabrica estufas y hornos. La compañía tiene tres almacenes y dos tiendas de venta al detalle. En los tres almacenes se dispone, respectivamente, de 60, 80 y 0 estufas, y de 80, 0 y 0 hornos. En las tiendas de detalle se requieren, respectivamente, 0 y 90 estufas, y 60 y 1 hornos. En la siguiente tabla se dan los costos de envío por unidad, de los almacenes a las tiendas de detalle, los cuales se aplican tanto a estufas como a hornos. Encontrar las soluciones factibles óptimas para estos problemas de transporte. Almacén Cadena Almacén Cadena

5 /370 COSTO TOTAL: 140(3)+(2)+1(3)+0(3) =90. Una fábrica produce tres artículos A, B y C, en las siguientes tres plantas que posee. La primera y segunda planta pueden fabricar los tres artículos pero la tercera solo los artículos A y C. La demanda de los artículos A, B y C son 600, 800 y 700 unidades diarias respectivamente. La primera como la tercera planta su producción es de 600 unidades diarias y la segunda planta es de 900 unidades diarias. El costo de fabricación Soles/unidad es: Artículos Planta A B C X Plantear y resolver el problema como un modelo de transporte /20 COSTO TOTAL: 600()+800(8)+0()+700()= Tres plantas de energía eléctrica con capacidad de, 3 y 40 millones de kilovatios/hora, proporcionan electricidad a tres ciudades. La demanda máxima en las tres ciudades se calcula en, 3 y 2 millones de kilovatios/hora. La tabla proporciona el precio por millón de kilovatios/hora en las tres ciudades. Ciudades Planta $600 $700 $400 2 $3 $0 $30 3 $00 $480 $40

6 DEMANDA /9 COSTO TOTAL: 1(400)+(0)+3(0)+(00)+(40)= 36,000

815 6 10 9 35/15/0 9 20 12 13 7 50/20/0 1410 9 16 5 40/30/0 45/30/10/0 20/0 30/0 30/0 125 \125. Costo total: 15(8)+20(9)+10(14)+20(6)+30(16) 1250

815 6 10 9 35/15/0 9 20 12 13 7 50/20/0 1410 9 16 5 40/30/0 45/30/10/0 20/0 30/0 30/0 125 \125. Costo total: 15(8)+20(9)+10(14)+20(6)+30(16) 1250 Problema 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y 3 pueden satisfacer 35, 50 y 40 millones de [kwh] respectivamente.

Más detalles

PROBLEMA DE FLUJO DE COSTO MINIMO.

PROBLEMA DE FLUJO DE COSTO MINIMO. EL PROBLEMA DE TRANSPORTE PROBLEMA DE FLUJO DE COSTO MINIMO. 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y

Más detalles

PROBLEMA DE FLUJO DE COSTO MINIMO.

PROBLEMA DE FLUJO DE COSTO MINIMO. PROBLEMA DE FLUJO DE COSTO MINIMO. EL PROBLEMA DE TRANSPORTE 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y

Más detalles

PROBLEMA DE FLUJO DE COSTO MINIMO.

PROBLEMA DE FLUJO DE COSTO MINIMO. PROBLEMA DE FLUJO DE COSTO MINIMO. EL PROBLEMA DE TRANSPORTE 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y

Más detalles

Universidad Nacional de Ingeniería

Universidad Nacional de Ingeniería Universidad Nacional de Ingeniería Recinto Universitario Augusto Cesar Sandino Uni - RUACS Trabajo de Investigación de Operaciones Orientado Por: Ing. Mario Pastrana Moreno Carrera: Ingeniería de Sistemas

Más detalles

1. Considerar el problema de transporte definido por (Origen) a= (6, 7, 8), (Destino) b= (6, 9, 4, 2) y 4 1 5 6 C = 2 8 9 3.

1. Considerar el problema de transporte definido por (Origen) a= (6, 7, 8), (Destino) b= (6, 9, 4, 2) y 4 1 5 6 C = 2 8 9 3. UNIVERSIDAD DE MANAGUA CURSO: PROGRAMACIÓN LINEAL TAREA # 2 Problemas de Transporte, transbordo y asignación Prof. : MSc. Julio Rito Vargas Avilés III C 2015 1. Considerar el problema de transporte definido

Más detalles

La solución inicial puede ser óptima o no, la forma de saberlo es realizando la prueba de optimalidad que consiste en los siguientes pasos:

La solución inicial puede ser óptima o no, la forma de saberlo es realizando la prueba de optimalidad que consiste en los siguientes pasos: Solución óptima a los problemas de transporte La solución inicial puede ser óptima o no, la forma de saberlo es realizando la prueba de optimalidad que consiste en los siguientes pasos: a) Calcular los

Más detalles

www.klasesdematematicasymas.com

www.klasesdematematicasymas.com 1. Resolver el siguiente problema por el sistema dual simplex Max Z = 0,50X 1 + 0,40X 2 2X 1 + X 2 120 2X 1 + 3X 2 240 X 1, X 2 0 El modelo estándar es: Z 0,5X 1 0,40X 2 + 0S 1 + 0S 2 = 0 2X 1 + X 2 +

Más detalles

EJERCICIOS PAU MAT II CC SOC. ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com

EJERCICIOS PAU MAT II CC SOC. ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com PROGRAMACIÓN LINEAL 1- Un deportista solamente puede tomar para desayunar barritas de chocolate y barritas de cereales. Cada barrita de chocolate proporciona 40 gramos de hidratos de carbono, 30 gramos

Más detalles

SOLUCIÓN PRÁCTICA Nº 10. Programación Lineal. MATEMÁTICAS 1º VETERINARIA. Curso 2002-2003

SOLUCIÓN PRÁCTICA Nº 10. Programación Lineal. MATEMÁTICAS 1º VETERINARIA. Curso 2002-2003 SOLUCIÓN PRÁCTIC Nº 0 Programación Lineal MTEMÁTICS º VETERINRI Curso 00-00 Supongamos que se quiere elaborar una ración que satisfaga unas condiciones mínimas de contenidos vitamínicos diarios por ejemplo

Más detalles

PROBLEMAS DE OPTIMIZACIÓN LINEAL

PROBLEMAS DE OPTIMIZACIÓN LINEAL PROBLEMAS DE OPTIMIZACIÓN LINEAL PROBLEMA DE LA PRODUCCIÓN 1.- Una fábrica elabora dos tipos de productos, A y B. El tipo A necesita 2 obreros trabajando un total de 20 horas, y se obtiene un beneficio

Más detalles

Formulación de un Modelo de Programación Lineal

Formulación de un Modelo de Programación Lineal Formulación de un Modelo de Programación Lineal Para facilitar el planteamiento del modelo matemático general de la PL considere el siguiente problema: La planta HBB fabrica 4 productos que requieren para

Más detalles

1 $10 $0 $20 $11 15 2 $12 $7 $9 $20 25 3 $0 $14 $16 $18 10 Total demanda

1 $10 $0 $20 $11 15 2 $12 $7 $9 $20 25 3 $0 $14 $16 $18 10 Total demanda UNIDAD V. ALGORITMOS ESPECIALES 5.4. Métodos de aproximación para obtener una solución básica inicial Para resolver problemas de transporte se debe crear una solución básica inicial, la obtención de esta

Más detalles

PROBLEMAS DE PROGRAMACIÓN ENTERA I

PROBLEMAS DE PROGRAMACIÓN ENTERA I Problemas de Programación Entera I 1 PROBLEMAS DE PROGRAMACIÓN ENTERA I 1. Un departamento ha dispuesto 2 millones de pesetas de su presupuesto general para la compra de material informático, con el que

Más detalles

Módulo Programación lineal. 3 Medio Diferenciado

Módulo Programación lineal. 3 Medio Diferenciado Módulo Programación lineal 3 Medio Diferenciado Profesor: Galo Páez Nombre: Curso :. Sabemos que una ecuación lineal de dos variables tiene la forma con ó y representa siempre una recta en el plano. Ahora

Más detalles

ECONOMÍA DE LA EMPRESA PROBLEMAS DE UMBRAL DE RENTABILIDAD

ECONOMÍA DE LA EMPRESA PROBLEMAS DE UMBRAL DE RENTABILIDAD ECONOMÍA DE LA EMPRESA PROBLEMAS DE UMBRAL DE RENTABILIDAD 1 Los alumnos de 2º curso del IES San Saturnino, con objeto de recabar fondos para su viaje de estudios, se plantean la posibilidad de vender

Más detalles

INVESTIGACIÓN OPERATIVA

INVESTIGACIÓN OPERATIVA FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA DE SISTEMAS INVESTIGACIÓN OPERATIVA Mg Jessica Pérez Rivera PROBLEMAS DE TRANSPORTE Y ASIGNACIÓN Las aplicaciones de la programación

Más detalles

MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO

MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO Investigación de Operaciones 1 Introducción a la Programación Lineal Un modelo de programación lineal busca maximizar o minimizar una función lineal, sujeta a

Más detalles

METODO SIMPLEX ANALISIS DE SENSIBILIDAD Y DUALIDAD

METODO SIMPLEX ANALISIS DE SENSIBILIDAD Y DUALIDAD METODO SIMPLEX ANALISIS DE SENSIBILIDAD Y DUALIDAD Análisis de sensibilidad con la tabla simplex El análisis de sensibilidad para programas lineales implica el cálculo de intervalos para los coeficientes

Más detalles

Instituto Tecnologico Metropolitano Metodo simplex Ejercicios

Instituto Tecnologico Metropolitano Metodo simplex Ejercicios Instituto Tecnologico Metropolitano Metodo simplex Ejercicios April 16, 2016 Contenido 1 Contenido 2 Envases S.A 3 Grangero 4 Televisores 5 Agua Mineral 6 Problema de la Dieta Envases S.A Una empresa desea

Más detalles

PROBLEMAS de Programación Lineal : Resolución Gráfica

PROBLEMAS de Programación Lineal : Resolución Gráfica PROBLEMAS de Programación Lineal : Resolución Gráfica Ej. (1.1) Mostrar gráficamente porque los 2 PL siguientes no tienen una Solución Optima y explicar la diferencia entre los dos. (C) (A) Max z = 2x

Más detalles

Aplicaciones de la programación

Aplicaciones de la programación Tema 3 Aplicaciones de la programación dinámica 3.1. Problemas de Inventario Ejemplo 3.1. Supóngase que una empresa sabe que la demanda de un determinado producto durante cada uno de los próximos cuatro

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E. CURSO 01-013 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC. SS. - Cada alumno debe elegir sólo una de las pruebas (A o B). - Cada una de las preguntas

Más detalles

GUIA DE EJERCICIOS - TEORIA DE DECISIONES

GUIA DE EJERCICIOS - TEORIA DE DECISIONES GUIA DE EJERCICIOS - TEORIA DE DECISIONES PROBLEMAS EN SITUACION DE CERTIDUMBRE: 1 Un estudiante de Administración de Empresas en la UNAP necesita completar un total de 65 cursos para obtener su licenciatura.

Más detalles

Ejercicios Tema 5. La sociedad además debe soportar los siguientes gastos: Por el seguro: 450 euros y por derechos arancelarios: 980 euros

Ejercicios Tema 5. La sociedad además debe soportar los siguientes gastos: Por el seguro: 450 euros y por derechos arancelarios: 980 euros Ejercicios Tema 5 Ejercicio 1. La sociedad ANEOR, SA adquiere 1.000 uds de mercancías por 18.000 euros, siendo los gastos de transporte de 550 euros. El proveedor concede a la sociedad un descuento por

Más detalles

La programación lineal hace referencia al uso eficiente o distribución de recursos limitados, para alcanzar unos objetivos determinados.

La programación lineal hace referencia al uso eficiente o distribución de recursos limitados, para alcanzar unos objetivos determinados. Programación lineal La programación lineal hace referencia al uso eficiente o distribución de recursos limitados, para alcanzar unos objetivos determinados. El nombre de programación no se refiere a la

Más detalles

APLICACIONES DEL CÁLCULO INTEGRAL EN LA ADMINISTRACIÓN Y EN LA ECONOMÍA

APLICACIONES DEL CÁLCULO INTEGRAL EN LA ADMINISTRACIÓN Y EN LA ECONOMÍA APLICACIONES DEL CÁLCULO INTEGRAL EN LA ADMINISTRACIÓN Y EN LA ECONOMÍA Valor promedio Problemas de Aplicación 1. Suponga que el costo en dólares de un producto está dado por C(x)= 400+x+0.3x 2, donde

Más detalles

INECUACIONES: Ejercicio 1.- Resuelve las siguientes inecuaciones lineales con una incógnita:

INECUACIONES: Ejercicio 1.- Resuelve las siguientes inecuaciones lineales con una incógnita: RELACIÓN DE EJERCICIOS TEMA 4.- Inecuaciones 1º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I INECUACIONES: Ejercicio 1.- Resuelve las siguientes inecuaciones lineales con una incógnita:

Más detalles

Programación Lineal y Optimización Primer Examen Parcial :Solución Profr. Eduardo Uresti, Enero-Mayo 2011

Programación Lineal y Optimización Primer Examen Parcial :Solución Profr. Eduardo Uresti, Enero-Mayo 2011 Programación Lineal y Optimización Primer Examen Parcial : Profr. Eduardo Uresti, Enero-Mayo 2011 Matrícula: Nombre: 1. Una pequeña empresa fabrica sustancias de dos tipos a partir de tres materias primas,

Más detalles

Problemas de Sistemas de Inecuaciones lineales con dos incógnitas.

Problemas de Sistemas de Inecuaciones lineales con dos incógnitas. Problema 1. Se considera la región factible dada por el siguiente conjunto de restricciones: + 5 + 3 9 0, Representar la región factible que determina el sistema de inecuaciones anterior hallar de forma

Más detalles

los requerimientos y al mismo tiempo lograr reducir o minimizar el costo de dicha operación.

los requerimientos y al mismo tiempo lograr reducir o minimizar el costo de dicha operación. UNIDAD III. INVESTIGACIÓN DE OPERACIONES APLICADA A LOS NEGOCIOS Tema 3.2 El modelo de transporte es un problema de optimización de redes donde debe determinarse como hacer llegar los productos desde los

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E. CURSO 014-015 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC. SS. 1 - Cada alumno debe elegir sólo una de las pruebas (A o B). - Cada una de las preguntas

Más detalles

RESOLUCIÓN DE PROBLEMAS DE PROGRAMACIÓN LINEAL CON LA CALCULADORA

RESOLUCIÓN DE PROBLEMAS DE PROGRAMACIÓN LINEAL CON LA CALCULADORA RESOLUCIÓN DE PROBLEMAS DE PROGRAMACIÓN LINEAL CON LA CALCULADORA AUTORÍA JUAN JOSÉ MUÑOZ LEÓN TEMÁTICA PROGRAMACIÓN LINEAL ETAPA BACHILLERATO Resumen Este artículo trata de cómo resolver problemas de

Más detalles

Verde-Amarillo es eficiencia. Filtros para compresores

Verde-Amarillo es eficiencia. Filtros para compresores Verde-Amarillo es eficiencia Filtros para compresores No se la juegue y elija el mejor servicio: La gama de filtros para todos los compresores Elementos separadores aire-aceite Filtros de aire Filtros

Más detalles

Modelos de input-output y cadenas de Markov

Modelos de input-output y cadenas de Markov MaMaEuSch Management Mathematics for European Schools http://www.mathematik.unikl.de/~mamaeusch/ Modelos de input-output y cadenas de Markov Ao. Univ.-Prof. Werner Peschek El proyecto MaMaEuSch ha sido

Más detalles

UNIVERSIDAD DE MANAGUA

UNIVERSIDAD DE MANAGUA UNIVERSIDAD DE MANAGUA Sistemático de Programación Lineal Problemas de Programación Lineal: Solución Gráfica, Analítica, Sensibilidad y Método Simplex Prof. MSc. Ing. Julio Rito Vargas Avilés IIIC- 2016

Más detalles

Contabilidad Financiera - Administración

Contabilidad Financiera - Administración CONTABILIDAD DE INVENTARIOS El objetivo principal de este capítulo es mostrar los métodos y procedimientos para valuar los inventarios en el balance general y para registrar el costo de los artículos vendidos

Más detalles

MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO. M. En C. Eduardo Bustos Farías

MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO. M. En C. Eduardo Bustos Farías MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO M. En C. Eduardo Bustos Farías 1 Introducción a la Programación Lineal Un modelo de programación lineal busca maximizar o minimizar una función lineal, sujeta

Más detalles

Práctica N 6 Modelos de Programación Lineal Entera

Práctica N 6 Modelos de Programación Lineal Entera Práctica N 6 Modelos de Programación Lineal Entera 6.1 Una empresa textil fabrica 3 tipos de ropa: camisas, pantalones y shorts. Las máquinas necesarias para la confección deben ser alquiladas a los siguientes

Más detalles

Propuesta A. 2 0 b) Dada la ecuación matricial: X = , despeja y calcula la matriz X. (0.75 ptos) 2 1

Propuesta A. 2 0 b) Dada la ecuación matricial: X = , despeja y calcula la matriz X. (0.75 ptos) 2 1 Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (015) Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumno deberá contestar a una de las dos opciones propuestas A o B. Se

Más detalles

Resolución. Resolución gráfica de problemas de optimización

Resolución. Resolución gráfica de problemas de optimización Resolución de problemas de optimización Para resolver mente un problema de optimización como éste empezamos representando sus restricciones con igualdad. (0, 4) (0, 4) (4, 0) Para resolver mente un problema

Más detalles

EL MÉTODO SIMPLEX ALGEBRAICO. M. En C. Eduardo Bustos Farías

EL MÉTODO SIMPLEX ALGEBRAICO. M. En C. Eduardo Bustos Farías EL MÉTODO SIMPLEX ALGEBRAICO M. En C. Eduardo Bustos Farías 1 EL METODO SIMPLEX Es un procedimiento general para resolver problemas de programación lineal. Fue desarrollado en el año de 1947 por George

Más detalles

Málaga 21/Dic/2011. Eficiencia Energética en Edificios: Iluminación Natural

Málaga 21/Dic/2011. Eficiencia Energética en Edificios: Iluminación Natural Málaga 21/Dic/2011 Eficiencia Energética en Edificios: Iluminación Natural ÍNDICE - EFICIENCIA ENERGÉTICA DE EDIFICIOS - BENEFICIOS DE LA ILUMINACIÓN NATURAL - DISEÑO DE UN SISTEMA DE ILUMINACIÓN NATURAL

Más detalles

Requisitos para formular un problema de programación lineal UNIDAD III. INVESTIGACIÓN DE OPERACIONES APLICADA A LOS NEGOCIOS

Requisitos para formular un problema de programación lineal UNIDAD III. INVESTIGACIÓN DE OPERACIONES APLICADA A LOS NEGOCIOS UNIDAD III. INVESTIGACIÓN DE OPERACIONES APLICADA A LOS NEGOCIOS Tema 3.1 y método simplex Es una técnica matemática que se ha usado con éxito en la solución de problemas referentes a la asignación personal,

Más detalles

Desaladora de Oropesa del Mar y Cabanes

Desaladora de Oropesa del Mar y Cabanes Desaladora de Oropesa del Mar y Cabanes 21,5 hm 3 de agua garantizada para el abastecimiento de 150.000 personas Una manera de hacer Europa La alta concentración de población y la agricultura intensiva

Más detalles

Planteamiento de problemas de programación lineal. M. En C. Eduardo Bustos Farías

Planteamiento de problemas de programación lineal. M. En C. Eduardo Bustos Farías Planteamiento de problemas de programación lineal M. En C. Eduardo Bustos Farías 1 Objetivo Analizar diferentes ejemplos del uso de la metodología de la Investigación de Operaciones para el planteamiento

Más detalles

MEZCLA DE LA MERCADOTECNIA PLAZA. MM. Verónica Bolaños López

MEZCLA DE LA MERCADOTECNIA PLAZA. MM. Verónica Bolaños López MEZCLA DE LA MERCADOTECNIA PLAZA DISTRIBUCIÓN Función comercial de poner los productos al alcance del mercado CANALES DE DISTRIBUCIÓN Son las líneas a través de las que se efectúa la función de distribución

Más detalles

ANEXO II: CUESTIONARIO PARA EVALUACIÓN DE PROVEEDORES

ANEXO II: CUESTIONARIO PARA EVALUACIÓN DE PROVEEDORES ANEXO II: CUESTIONARIO PARA EVALUACIÓN DE PROVEEDORES 1.- Identificación de la empresa proveedora. Nombre:...... N.I.F.:... El presente cuestionario ha sido cumplimentado día...por: Apellidos:...... Nombre:......

Más detalles

Problemas de transporte, asignación y trasbordo

Problemas de transporte, asignación y trasbordo Problemas de transporte, asignación y trasbordo 1. Plantear un problema de transporte Tiene como objetivo encontrar el mejor plan de distribución, generalmente minimizando el coste. Un problema está equilibrado

Más detalles

Ejercicios. April 22, 2016. Instituto Tecnologico Metropolitano. Metodo simplex. Ejercicios. Wbaldo Londoño. Contenido. Envases S.A.

Ejercicios. April 22, 2016. Instituto Tecnologico Metropolitano. Metodo simplex. Ejercicios. Wbaldo Londoño. Contenido. Envases S.A. April 22, 2016 1 2 3 4 5 6 7 8 9 10 Una empresa desea planificar su producción para la próxima semana. Esta empresa produce un producto envasado en tres tamaños diferentes, de 120 gramos; de 200 gr y de

Más detalles

GRÁFICAS DE FUNCIÓN PRODUCTIVA (Ejemplos)

GRÁFICAS DE FUNCIÓN PRODUCTIVA (Ejemplos) GRÁFICAS DE FUNCIÓN PRODUCTIVA (Ejemplos) 1 2 3a 3b 4 5a 1 6 5b 7 8a 8b 9 2 10 11a 11b 12a 12b 13 3 PRÁCTICAS DE FUNCIÓN PRODUCTIVA (Modelos) 1. FUNCIÓN DE PRODUCCIÓN (Producto marginal) Máquinas Gorros/día

Más detalles

Por Sustitución: y= 2x+6 x + 3 (2x+6) = 4 x + 6x + 18 = 4 7x = -14 x= -2 y=2 (-2)+6 y=2. Por Igualación: 6x+18=4-x 7x=-14 x= -2 y=2 (-2)+6 y=2

Por Sustitución: y= 2x+6 x + 3 (2x+6) = 4 x + 6x + 18 = 4 7x = -14 x= -2 y=2 (-2)+6 y=2. Por Igualación: 6x+18=4-x 7x=-14 x= -2 y=2 (-2)+6 y=2 Tema 5: Sistemas de Ecuaciones y de Inecuaciones. Programación lineal. 5.1 Sistemas de dos ecuaciones con dos incógnitas. Un sistema de dos ecuaciones con dos incógnitas es de la forma: Un par de valores

Más detalles

TEMA Nº 5 CAPACIDAD DE PRODUCCIÓN

TEMA Nº 5 CAPACIDAD DE PRODUCCIÓN UNIVERSIDAD DE LOS ANDES FACULTAD DE CIENCIAS ECONÓMICAS Y SOCIALES ESCUELA DE ADMINISTRACIÓN Y CONTADURÍA PUBLICA DEPARTAMENTO DE CIENCIAS ADMINISTRATIVAS ASIGNATURA: PRODUCCIÓN I TEMA Nº 5 CAPACIDAD

Más detalles

Facultad de Ingeniería Escuela de Ingeniería Industrial Logística Industrial Catedrático: Ing. Víctor Cornejo

Facultad de Ingeniería Escuela de Ingeniería Industrial Logística Industrial Catedrático: Ing. Víctor Cornejo Facultad de Ingeniería Escuela de Ingeniería Industrial Logística Industrial Catedrático: Ing. Víctor Cornejo Estudio de Caso 1 Logística BMW: Un paso al futuro Presentado por: Meléndez Alvarado, Ana del

Más detalles

PRORRATEO PRIMARIO Y SECUNDARIO. Prorrateos de cargos indirectos fabriles.

PRORRATEO PRIMARIO Y SECUNDARIO. Prorrateos de cargos indirectos fabriles. PRORRATEO PRIMARIO Y SECUNDARIO Prorrateos de cargos indirectos fabriles. Cuando se desea tener un análisis departamental de los cargos indirectos de fábrica el problema contable tiene las siguientes fases:

Más detalles

PROCEDIMIENTO TÉCNICO DEL COMITÉ DE OPERACIÓN ECONÓMICA DEL SINAC CALCULO DE LOS COSTOS MARGINALES DE ENERGIA DE CORTO PLAZO

PROCEDIMIENTO TÉCNICO DEL COMITÉ DE OPERACIÓN ECONÓMICA DEL SINAC CALCULO DE LOS COSTOS MARGINALES DE ENERGIA DE CORTO PLAZO COES SINAC PROCEDIMIENTO TÉCNICO DEL COMITÉ DE OPERACIÓN ECONÓMICA DEL SINAC PR 07 CALCULO DE LOS COSTOS MARGINALES DE ENERGIA DE CORTO PLAZO Aprobado en S.D. N 18 del 18 de octubre de 1995. Modificación

Más detalles

UTALCA IMAFI. Resolver los siguientes ejercicios utilizando el método gráfico. Para ello:

UTALCA IMAFI. Resolver los siguientes ejercicios utilizando el método gráfico. Para ello: Resolver los siguientes ejercicios utilizando el método gráfico. Para ello: (a). Modelar matemáticamente la situación planteada. (b). Graficar, en un mismo sistema de coordenadas, todas las restricciones

Más detalles

UNIDAD 4 Programación Lineal

UNIDAD 4 Programación Lineal MATEMÁTICAS APLICADAS A LAS C. SOCIALES 2 Unidad 4 UNIDAD 4 Programación Lineal TEORÍA (Editorial Editex) Repaso de 1º Inecuaciones lineales con dos incógnitas (Repaso de 1º)(Pág. 80) Actividad resuelta:

Más detalles

PROGRAMACIÓN LINEAL. 1. Introducción

PROGRAMACIÓN LINEAL. 1. Introducción PROGRAMACIÓN LINEAL 1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX), que consiste en una serie de métodos y procedimientos que permiten resolver problemas

Más detalles

optimización: programación lineal y entera

optimización: programación lineal y entera UNIVERSIDAD PERUANA LOS ANDES Facultad de Ciencias i Administrativas i ti y Contables METODOS CUANTITATIVOS DE NEGOCIOS capítulo 2. modelos de optimización: programación lineal y entera Objetivos de Aprendizaje:

Más detalles

Tema # 14. Universidad Tec Milenio: Profesional CA04003 Cadena de Suministro. Al finalizar el tema serás capaz de:

Tema # 14. Universidad Tec Milenio: Profesional CA04003 Cadena de Suministro. Al finalizar el tema serás capaz de: Tema # 14 Proceso de Producción Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Determinar el proceso de producción. D.R. Universidad TecMilenio 1 Introducción del tema Al haber leído

Más detalles

EJERCICIOS: TEMA 4: PROGRAMACIÓN LINEAL.

EJERCICIOS: TEMA 4: PROGRAMACIÓN LINEAL. EJERCICIOS: TEMA 4: PROGRAMACIÓN LINEAL. 1º/ Un taller de fabricación de muebles de oficina dispone de 700 kg de hierro y 1000 kg de alumnio para la producción de sillas y sillones metálicos. Cada silla

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio

Más detalles

PHPSimplex es una herramienta online para resolver problemas de programación lineal. Su uso es libre y gratuito. http://www.phpsimplex.

PHPSimplex es una herramienta online para resolver problemas de programación lineal. Su uso es libre y gratuito. http://www.phpsimplex. IES de MOS Ejercicios Programación Lineal PHPSimplex es una herramienta online para resolver problemas de programación lineal. Su uso es libre y gratuito. http://www.phpsimplex.com 1. Dada la región del

Más detalles

EJERCICIO 16 LA COMPETENCIA PERFECTA. La función de demanda siguiente es la misma para todos los compradores: P = -20q + 164

EJERCICIO 16 LA COMPETENCIA PERFECTA. La función de demanda siguiente es la misma para todos los compradores: P = -20q + 164 EJERCICIO 16 LA COMPETENCIA PERFECTA El modelo de competencia perfecta es uno de los modelos de mercado más importantes en microeconomía. En este ejercicio analizamos dicho modelo. * Consideremos una situación

Más detalles

Opción A. Alumno. Fecha: 23 Noviembre 2012

Opción A. Alumno. Fecha: 23 Noviembre 2012 Fecha: 3 Noviembre 0 Opción A Alumno. Ejercicio nº.- a) Resuelve el siguiente sistema, utilizando el método de Gauss: +=3 3+ = 3 3+3=9 +4 4= 3 3 3 3 4+ 5 0 0 0 3 3 9 5 0 0 0 5 0 0 3 0 6 5 0 0 0 Rango A

Más detalles

CUBICAJE : BASE DE LA COTIZACIÓN

CUBICAJE : BASE DE LA COTIZACIÓN CUBICAJE : BASE DE LA COTIZACIÓN Para poder cotizar se requiere determinar un Precio unitario (por artículo) de los productos que se ofrecen. Para ello, ya hemos analizado el aspecto de costos y la importancia

Más detalles

INECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA. 1) Resuelve las siguientes inecuaciones de primer grado con una incógnita:

INECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA. 1) Resuelve las siguientes inecuaciones de primer grado con una incógnita: º ESO Inecuaciones sistemas de inecuaciones INECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA. ) Resuelve las siguientes inecuaciones de primer grado con una incógnita:.) 7.).).) ( ) ( ) ( ).) 8.) ( ).7)

Más detalles

Ejemplos de clase Administración de Inventarios

Ejemplos de clase Administración de Inventarios Ejemplos de clase Administración de Inventarios ADMINISTRACIÓN DE INVENTARIOS A. MODELOS DE INVENTARIO PARA DEMANDA INDEPENDIENTE B. MODELOS PROBABILISTICOS E INVENTARIOS DE SEGURIDAD C. SISTEMAS DE PERIODO

Más detalles

CAEM México. Productos JM Villegas GOPRI. Distribuidores Autorizados en México

CAEM México. Productos JM Villegas GOPRI. Distribuidores Autorizados en México CAEM México Productos JM Villegas GOPRI Distribuidores Autorizados en México CAEM México CAEM Ingeniería en Góndola Desde 1958 1958. Se funda CAEM-Magrini S.p.A. por Rito Magrini introduciendo nuevos procesos

Más detalles

Formato de Petición de Información a Proveedores.

Formato de Petición de Información a Proveedores. Formato de Petición de Información a Proveedores. El presente formato de petición de información se ha elaborado con la intención de recabar los datos de emisiones asociadas a la cadena de valor de los

Más detalles

TEMA 4 PROGRAMACIÓN LINEAL

TEMA 4 PROGRAMACIÓN LINEAL Tema Programación lineal Ejercicios resueltos - Matemáticas CCSSII º Bach TEMA PROGRAMACIÓN LINEAL INECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA EJERCICIO : a) Halla la inecuación que corresponde al siguiente

Más detalles

PROBLEMA 1. Considere el siguiente problema de programación lineal:

PROBLEMA 1. Considere el siguiente problema de programación lineal: PROBLEMA 1 Considere el siguiente problema de programación lineal: Sean h1 y h2 las variables de holgura correspondientes a la primera y segunda restricción, respectivamente, de manera que al aplicar el

Más detalles

Asociación Española de Contabilidad y Administración de Empresas Servicio Infoaeca

Asociación Española de Contabilidad y Administración de Empresas Servicio Infoaeca Asociación Española de Contabilidad y Administración de Empresas Servicio Infoaeca Titulo: En qué consiste el ciclo contable? Fuente: Monografías.com Autor: Miriam Rone 1. Ciclos de la contabilidad de

Más detalles

Planificación contra stock

Planificación contra stock Planificación contra stock 129 Problema FS1 Planificación contra stock Determinar el ciclo de producción para la siguiente familia suponiendo 250 días de trabajo por año. Producto D I (u/año) p i ( /u)

Más detalles

FUNDACION NIC-NIIF www.nicniif.org

FUNDACION NIC-NIIF www.nicniif.org NORMAS INTERNACIONALES DE INFORMACION FINANCIERA NIC-NIIF Métodos de valoración de las existencias y cambios de estos métodos- NIC-NIIF NIC 2 CASO PRÁCTICO 2.1 Una empresa puede tener diferentes tipos

Más detalles

Experiencia, tecnología y calidad

Experiencia, tecnología y calidad Experiencia, tecnología y calidad EXPERIENCIA En el GRUPO BETICO líder nacional en la fabricación y comercialización de compresores, desde el año 1925 hemos diseñado y construido compresores de aire de

Más detalles

(Tomado de: http://descartes.cnice.mecd.es/materiales_didacticos/porcentajes_e_indices/porcentaje.htm)

(Tomado de: http://descartes.cnice.mecd.es/materiales_didacticos/porcentajes_e_indices/porcentaje.htm) PORCENTAJES (Tomado de: http://descartes.cnice.mecd.es/materiales_didacticos/porcentajes_e_indices/porcentaje.htm) Para hacer los ejercicios en forma interactiva tiene que estar conectado a la página arriba

Más detalles

CUADERNO DE RECUPERACIÓN TECNOLOGÍAS 3º ESO

CUADERNO DE RECUPERACIÓN TECNOLOGÍAS 3º ESO CUADERNO DE RECUPERACIÓN TECNOLOGÍAS 3º ESO INSTRUCCIONES: Este cuaderno sirve para preparar la asignatura de cara al examen de septiembre y consta de dos tipos de actividades: las primeras que se indican

Más detalles

Programación Lineal MARCAS GRADO I GRADO II UTILIDAD REGULAR 50% 50% $ 5 SÚPER 75% 25% $ 6

Programación Lineal MARCAS GRADO I GRADO II UTILIDAD REGULAR 50% 50% $ 5 SÚPER 75% 25% $ 6 Programación Lineal 1. Una compañía destiladora tiene dos grados de güisqui en bruto (sin mezclar), I y II, de los cuales produce dos marcas diferentes. La marca regular contiene un 0% de cada uno de los

Más detalles

Cuaderno de Actividades 4º ESO

Cuaderno de Actividades 4º ESO Cuaderno de Actividades 4º ESO Relaciones funcionales. Estudio gráfico y algebraico de funciones 1. Interpretación de gráficas 1. Un médico dispone de 1hora diaria para consulta. El tiempo que podría,

Más detalles

Colegio Portocarrero. Curso 2015-2016. Departamento de matemáticas. Álgebra, programación lineal y análisis. (con solución)

Colegio Portocarrero. Curso 2015-2016. Departamento de matemáticas. Álgebra, programación lineal y análisis. (con solución) Álgebra, programación lineal y análisis (con solución) Problema 1: Dada la función a) Representa gráficamente f(x) b) Estudia su continuidad. Problema 2: Sea la función f definida por a) Estudia la continuidad

Más detalles

Si Le = tiempo de entrega efectivo entre el momento en que se hace un pedido y el. Le = L n t * 0, t 0 = y * / D, n = Entero más grande L/ t 0

Si Le = tiempo de entrega efectivo entre el momento en que se hace un pedido y el. Le = L n t * 0, t 0 = y * / D, n = Entero más grande L/ t 0 CAPITULO 5: PROGRAMACIÓN DE MODELOS DE POLÍTICAS DE INVENTARIOS 5.1 Programación de Modelo EOQ en Excel El modelo EOQ clásico calcula la cantidad que debe pedirse o producirse minimizando los costos de

Más detalles

CAPÍTULO II LA CADENA DE SUMINISTRO

CAPÍTULO II LA CADENA DE SUMINISTRO CAPÍTULO II LA CADENA DE SUMINISTRO 2.1 Conceptos Cadena de suministro (en inglés, Supply Chain) es una expresión figurada para designar en la compleja serie de procesos de intercambio o flujos de materiales

Más detalles

MÁQUINAS DE ENVASADO EN BLÍSTER Y SERVICIOS QUE OFRECEN FLEXIBILIDAD Y ENVASES BLÍSTER EN UNA GRAN VARIEDAD DE MATERIALES.

MÁQUINAS DE ENVASADO EN BLÍSTER Y SERVICIOS QUE OFRECEN FLEXIBILIDAD Y ENVASES BLÍSTER EN UNA GRAN VARIEDAD DE MATERIALES. MÁQUINAS DE ENVASADO EN BLÍSTER Y SERVICIOS QUE OFRECEN FLEXIBILIDAD Y ENVASES BLÍSTER EN UNA GRAN VARIEDAD DE MATERIALES. 06 1. SOLUCIONES DE ENVASADO 07 1. SOLUCIONES DE ENVASADO MÁQUINAS DE ALTA CALIDAD

Más detalles

Problemas de programación lineal.

Problemas de programación lineal. Matemáticas 2º Bach CCSS. Problemas Tema 2. Programación Lineal. Pág 1/12 Problemas de programación lineal. 1. Unos grandes almacenes encargan a un fabricante pantalones y chaquetas deportivas. El fabricante

Más detalles

Para hacer frente a esa demanda la empresa dispone de varias alternativas:

Para hacer frente a esa demanda la empresa dispone de varias alternativas: PLAN DE DEMANDA AGREGADA EJERCICIO 2.1 Una empresa fabricante de materiales para tejados ha establecido las siguientes previsiones mensuales de tejas para el periodo comprendido entre los meses de enero

Más detalles

PLIEGO TARIFARIO DE ELEKTRA NORESTE S.A. PARA CLIENTES REGULADOS Y CARGOS POR USO DE LA RED DE DISTRIBUCIÓN ELÉCTRICA PERIODO JULIO 2014 JUNIO 2018

PLIEGO TARIFARIO DE ELEKTRA NORESTE S.A. PARA CLIENTES REGULADOS Y CARGOS POR USO DE LA RED DE DISTRIBUCIÓN ELÉCTRICA PERIODO JULIO 2014 JUNIO 2018 PLIEGO TARIFARIO DE ELEKTRA NORESTE S.A. PARA CLIENTES REGULADOS Y CARGOS POR USO DE LA RED DE DISTRIBUCIÓN ELÉCTRICA PERIODO JULIO 2014 JUNIO 2018 1. INTRODUCCION Conforme a lo establecido en la Resolución

Más detalles

PROBLEMAS PROGRAMACION LINEAL SELECTIVIDAD 2º BTO CCSS

PROBLEMAS PROGRAMACION LINEAL SELECTIVIDAD 2º BTO CCSS PROBLEMAS PROGRAMACION LINEAL SELECTIVIDAD 2º BTO CCSS 1. Los 400 alumnos de un colegio van a ir de excursión. Para ello se contrata el viaje a una empresa que dispone de 8 autobuses de 40 plazas y 10

Más detalles

EL MÉTODO SIMPLEX ALGEBRAICO: MINIMIZACION. M. En C. Eduardo Bustos Farías

EL MÉTODO SIMPLEX ALGEBRAICO: MINIMIZACION. M. En C. Eduardo Bustos Farías EL MÉTODO SIMPLEX ALGEBRAICO: MINIMIZACION M. En C. Eduardo Bustos Farías 1 Minimización El método simplex puede aplicarse a un problema de minimización si se modifican los pasos del algoritmo: 1. Se cambia

Más detalles

Apoyo de la Comunidad de Madrid a Sistemas de Eficiencia Energética. Ayudas y Subvenciones

Apoyo de la Comunidad de Madrid a Sistemas de Eficiencia Energética. Ayudas y Subvenciones Apoyo de la Comunidad de Madrid a Sistemas de Eficiencia Energética. Ayudas y Subvenciones Ilmo. Sr. D. Carlos López Jimeno Director General de Industria, Energía y Minas Madrid, noviembre de 2009 1 Marco

Más detalles

Nombre: Presupuesto de producción y costo de ventas

Nombre: Presupuesto de producción y costo de ventas Presupuestos 1 Sesión No. 8 Nombre: Presupuesto de producción y costo de ventas Contextualización Anteriormente aprendimos acerca del pronóstico de ventas basado en las estrategias y fuerzas del mercado.

Más detalles

L estalvi i l eficiència energètica en Hotels.

L estalvi i l eficiència energètica en Hotels. L estalvi i l eficiència energètica en Hotels. Universitat de les Illes Balears Novembre 2003 Jeroni Cabot Jaume Enginyer Industrial Evolución del Consumo de energía a Balears Distribución del consumo

Más detalles

PROBLEMAS DE PUNTO MUERTO RESUELTOS

PROBLEMAS DE PUNTO MUERTO RESUELTOS PROBLEMAS DE PUNTO MUERTO RESUELTOS 1. Los alumnos de 2º curso del IES San Saturnino, con objeto de recabar fondos para su viaje de estudios, se plantean la posibilidad de vender bocadillos en un local

Más detalles

MICROECONOMÍA. Curso del Máster de Ingeniería Eléctrica, Electrónica y Automática: Mercados de Energía Eléctrica 16/02/2009

MICROECONOMÍA. Curso del Máster de Ingeniería Eléctrica, Electrónica y Automática: Mercados de Energía Eléctrica 16/02/2009 MICROECONOMÍA Curso del Máster de Ingeniería Eléctrica, Electrónica y Automática: Mercados de Energía Eléctrica 16/02/2009 onente: Jorge Martínez Crespo e-mail: jorgemar@ing.uc3m.es http://electrica.uc3m.es/~jorgemar

Más detalles

1. (10 min 1p) Cómo puede saber una empresa española si es mejor o peor que otra en el ámbito de la calidad total? Justifique la respuesta.

1. (10 min 1p) Cómo puede saber una empresa española si es mejor o peor que otra en el ámbito de la calidad total? Justifique la respuesta. Universidad de Navarra Nafarroako Unibertsitatea Escuela Superior de Ingenieros Ingeniarien Goi Mailako Eskola ASIGNATURA GAIA: Gestión de la Calidad CURSO KURTSOA 3º NOMBRE IZENA FECHA DATA 14 - junio

Más detalles

UNIDAD III. INVESTIGACIÓN DE OPERACIONES

UNIDAD III. INVESTIGACIÓN DE OPERACIONES UNIDAD III. INVESTIGACIÓN DE OPERACIONES Objetivo de la unidad: El alumno resolverá problemas utilizando la programación lineal y de proyectos para sugerir cursos de acción de mejora en las empresas turísticas

Más detalles

Pago de Facturas. Documento de Construcción. Copyright 2014 Bizagi

Pago de Facturas. Documento de Construcción. Copyright 2014 Bizagi Pago de Facturas Documento de Construcción Pago de Facturas 1 Tabla de Contenido Diagrama del Proceso... 2 Sub Proceso Devolver Factura Al Proveedor... 4 Modelo De Datos... 4 Tablas Paramétricas... 5 Construcción

Más detalles

10 Estudios previos: Análisis de las capacidades y medios disponibles

10 Estudios previos: Análisis de las capacidades y medios disponibles Iniciativas económicas para el desarrollo local: viabilidad y planificación 10 Estudios previos: Análisis de las capacidades y medios disponibles DESARROLLO ECONÓMICO LOCAL Índice Objetivos Análisis de

Más detalles

EJEMPLO 1. Solución: Definimos las variables originales como: = número de conejos. x = número de pollos.

EJEMPLO 1. Solución: Definimos las variables originales como: = número de conejos. x = número de pollos. EJEMPLO. En una granja agrícola se desea criar conejos y pollos como complemento en su economía de forma que no se superen en conjunto las 8 horas mensuales destinadas a esta actividad. Su almacén sólo

Más detalles
Sitemap