DESCRIPCIÓN DE FUNCIONES y 1.1.3


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "DESCRIPCIÓN DE FUNCIONES 1.1.2 y 1.1.3"

Transcripción

1 Capítulo DESCRIPCIÓN DE FUNCIONES El objetivo principal de estas lecciones consiste en que los alumnos puedan describir totalmente los elementos esenciales del gráfico de una función. Para describir el gráfico de una función en su totalidad, los alumnos deben responder las siguientes preguntas para investigación de gráficos: Pregunta para la investigación de gráficos Qué forma tiene el gráfico? La función va en aumento o en disminución (viéndola de izquierda a derecha)? Cuáles son los puntos de corte con el eje el eje? Eisten limitaciones respecto de los valores de entrada (dominio) de la ecuación? Eisten limitaciones respecto de los valores de salida (rango) de la ecuación? ( Eiste un valor máimo o mínimo de?) Deberían estar conectados los puntos? Ejemplo de enunciado sintético El gráfico es una recta/curva. A medida que aumenta, aumenta, de modo que la función va en aumento. El punto de corte del gráfico con el eje está en (2, 0) el punto de corte con el eje está en (0, 3). Solo son posibles valores positivos de cero. El valor más pequeño de es 0. No ha un valor máimo de. La situación dada solo tiene sentido para valores de entrada enteros, de modo que los puntos no deberían estar conectados. Los conceptos más formales de función, dominio, rango se abordan en las Lecciones Para más información, consulta los recuadros de Apuntes de matemáticas de la Lección..2. Las respuestas de los alumnos al Registro de aprendizaje de la Lección..3 (problema -27), si les fue asignado, también pueden ser de utilidad. Ejemplo Para la situación a continuación, crea una tabla, dibuja un gráfico descríbelo. En el mercado de productores, las manzanas cuestan $0.50 cada una. Nota que la cantidad mínima posible de la tabla es = 0. No se puede comprar un número negativo de manzanas. (nro. de manzanas) (costo) costo El gráfico es un conjunto discreto de puntos lineales porque solo se pueden comprar números enteros de manzanas. Comienza en (0, 0) aumenta de izquierda a derecha. Los valores de entrada solo pueden ser números enteros positivos, los valores de salida son 0 múltiplos de $0.50. número de manzanas Guía para padres con práctica adicional 205 CPM Educational Program. All rights reserved.

2 Ejemplo 2 Para la ecuación = 2 2, crea una tabla, dibuja un gráfico descríbelo en su totalidad. En esta instancia, no ha forma de saber cuántos puntos son suficientes para la tabla. Agrega los puntos que sean necesarios hasta que estés convencido de la forma la ubicación Ten cuidado con la sustitución al utilizar eponentes negativos para calcular valores. Los eponentes negativos se mueven a través de la barra de fracción para transformarse en positivos, entonces 2 2 = 2 2. Por ejemplo, si = 2, = = 4 2 = 7 4 =.75. El gráfico es una curva. De izquierda a derecha, crece la función. El punto de corte con el eje es (, 0). El punto de corte con el eje es (0, ). Los puntos del gráfico están conectados. No ha limitaciones respecto de los valores de entrada de la función. Los valores de salida pueden ser de cualquier valor maor de 2. Problemas Para cada ecuación o situación, crea una tabla, dibuja un gráfico, descríbelo.. = La gasolina cuesta $4.00 por galón. Cuánto cuesta comprar galones de gas? 3. = Mi eperimento de ciencia comienza con 5 bacterias el número se duplica cada hora. Cuántas bacterias habrá después de horas? 5. = El producto de los dos números es = (0.5) 8. Mi planta de tomates tenía 5 cm de alta cuando se plantó crece 2 cm por semana. Qué altura tendrá después de semanas? 9. = CPM Educational Program. All rights reserved. CC en español, Matemática Integrada I

3 Capítulo Respuestas. 2. costo 3. Recta; puntos de corte ( 4, 0) (0, 2); función creciente. Los valores de entrada pueden ser cualquier número real. Los valores de salida pueden ser cualquier número real. Los puntos están conectados. número de galones Semirrecta (gráfico proporcional); punto de corte punto de partida (0, 0); función creciente. Los valores de entrada pueden ser cualquier número no negativo. Los valores de salida son maores de 0 o iguales a 0. Los puntos están conectados. Curva; punto de corte (0, 2); función creciente. Los valores de entrada pueden ser cualquier número. Los valores de salida son maores de. Los puntos están conectados. 4. nro. de bacterias segundo número número de horas Curva; punto de corte punto de partida (0, 5); función creciente. Los valores de entrada pueden ser cualquier número no negativo. Los valores de salida son maores de 5 o iguales a 5. El gráfico debería estar conformado por varios puntos desconectados (pero son tantos que parecerán conectados). 7. Curva; punto de corte (0, ); función decreciente. Los valores de entrada pueden ser cualquier número real. Los valores de salida son maores de 0. Los puntos están conectados. Recta; puntos de corte (2.5, 0) (0, 5); función decreciente. Los valores de entrada pueden ser cualquier número real. Los valores de salida son cualquier número real. Los puntos están conectados. 8. altura (cm) Semirrecta; punto de corte punto de partida (0, 5); función creciente, Los valores de entrada pueden ser cualquier número no negativo. Los valores de salida son maores a 5 o iguales a 5 (pero probablemente menores de 80 o iguales a 80). número de semanas Variación inversa; no ha puntos de corte, función decreciente. Los valores de entrada pueden ser cualquier número ecepto 0. Los valores de salida son cualquier número ecepto 0. Los puntos están conectados ecepto en = primero número En forma de U; puntos de corte (2, 0), ( 2, 0) (0, 4); decreciente para < 0, creciente para > 0. Valor mínimo en (0, 4). Los valores de entrada pueden ser cualquier número real. Los valores de salida son maores a 4 o iguales a 4. Los puntos están conectados. Guía para padres con práctica adicional 205 CPM Educational Program. All rights reserved. 3

4 FUNCIONES La relación entre los valores de entrada (generalmente ) los valores de salida (generalmente ) se denomina función si por cada valor de entrada ha solamente un valor de salida. Las funciones pueden representarse mediante la ilustración de una máquina de entrada salida, como se muestra en la Lección.2.3 del libro de teto en el diagrama del Ejemplo a continuación. Nota: f() = 2 + es equivalente a = 2 +. El conjunto de todos los posibles valores de entrada de una relación se denomina dominio, mientras que el conjunto de todos los posibles valores de salida de una relación se denomina rango. Para obtener información adicional sobre funciones, notación de funciones dominio rango, consulta el recuadro de Apuntes de matemáticas de la Lección.2.3. Ejemplo Los valores de entrada de una función son los valores de salida son f(). Los números se ingresan a la máquina de funciones denominada f de a uno a la vez, luego la función realiza la operación sobre cada valor de entrada para determinar cada valor de salida. Por ejemplo, cuando = 3 se coloca en la función f de la derecha, la máquina multiplica 3 por 2 suma para obtener el valor de salida, f () que es 7. La notación f (3) = 7 indica que la función denominada f conecta el valor de entrada = 3 con el valor de salida 7. Esto también significa que el punto (3, 7) se ubica en el gráfico de la función. valores de entrada = 3 f () = 2 + f (3) = 7 valores de salida Ejemplo 2 a. Si f () = 2 entonces f () =? f () = 2 f () = 9 f () = 3 b. Si g() = 3 2 entonces g(5) =? g(5) = 3 (5) 2 g(5) = 3 25 g(5) = 22 c. Si f () = entonces f (2) =? f (2) = f (2) = 5 f (2) = CPM Educational Program. All rights reserved. CC en español, Matemática Integrada I

5 Capítulo Ejemplo 3 Una relación en la que cada valor de entrada tiene solo un valor de salida recibe el nombre de función. g() f () g() es una función: cada valor de entrada f () no es una función: cada valor de () tiene solo un valor de salida (). entrada maor de está asociado a dos g( 2) =, g(0) = 3, g(4), =, así valores de. f () = 2 f () = 2. sucesivamente. Ejemplo 4 El conjunto de todos los posibles valores de entrada de una relación se denomina dominio, mientras que el conjunto de todos los posibles valores de salida de una relación se conoce como rango. En el Ejemplo 3 anterior, el dominio de g() es 2 4, o todos los números entre 2 4. El rango es 3 o todos los números entre 3. El dominio de f () en el Ejemplo 3 anterior es o cualquier número real maor o igual a, dado que el gráfico comienza en continúa siempre hacia la derecha. Dado que el gráfico de f () se etiende siempre hacia las direcciones positivas negativas de, el rango consiste en todos los números reales. Ejemplo 5 Para el gráfico de la derecha, dado que los valores de se etienden siempre en ambas direcciones, el dominio está formado por todos los números reales. Los valores de comienzan en ascienden de forma tal que el rango es o todos los números maores o iguales a. Guía para padres con práctica adicional 205 CPM Educational Program. All rights reserved. 5

6 Problemas Determina los valores de salida de las siguientes máquinas de función los valores de entrada dados = 2 = 6 = 9 f () = f () = 2 f () = + 4. f () = (5 ) 2 f (8) =? f () =? 5. g() = 2 5 g( 3) =? f () =? 6. f () = f (3) =? f () =? 7. h() = 5 h(9) =? 8. h() = 5 h(9) =? 9. f () = 2 f (4) =? Determina si cada una de los siguientes gráficos representa una función. Luego indica su dominio rango CPM Educational Program. All rights reserved. CC en español, Matemática Integrada I

7 Capítulo Respuestas. f(2) = 0 2. f( 6) = 8 3. f(9) = 4 4. f(8) = 9 5. g( 3) = 4 6. no es posible 7. f(9) = 2 8. no es posible 9. f(4) = 6 0. Sí, cada valor de entrada tiene un valor de salida; el dominio está compuesto por todos los números, el rango es 3 3. No; = tiene dos valores de salida; el dominio es 4, 3,, 0,, 2, 3, 4, el rango es 4, 3, 2,, 0,, 2. No, por ejemplo = 0 tiene dos valores de salida; el dominio es 3, el rango está compuesto por todos los números 4. Sí; el dominio está compuesto por todos los números, el rango es 2 2. Sí; el dominio está compuesto por todos los números, el rango es No, varios valores de entrada tienen dos valores de salida; el dominio es 2 4 el rango es 2 4 Guía para padres con práctica adicional 205 CPM Educational Program. All rights reserved. 7

8 PROPIEDADES DE LAS POTENCIAS Y NOTACIÓN CIENTÍFICA Propiedades de las potencias Por lo general, simplificar una epresión que contiene eponentes implica eliminar los paréntesis los eponentes negativas, en la medida de lo posible. A continuación se enumeran las propiedades básicas de las potencias. () a b = a+b Ejemplos: 3 4 = 3+4 = = = 2 (2) a b = a b Ejemplos: 0 4 = 0 4 = = 24 7 = 2 3 or 2 3 (3) ( a ) b = ab Ejemplos: ( 4 ) 3 = 4 3 = 2 ( 2 3 ) 5 = = = 32 5 (4) 0 = Ejemplos: 2 0 = ( 3) 0 = ( 4 ) 0 = (5) n = n Ejemplos: 3 = 3 4 = = 4 2 = En todas las epresiones con fracciones, suponemos que el denominador no es igual a cero. Para más información, consulta el recuadro de Apuntes de matemáticas de la Lección.3.2. Para ejemplos ejercicios adicionales, consulta el material del Punto de comprobación 4. 6 = 6 Ejemplo ( 2 3 )( ) Reordena: Aplicando la propiedad (): Ejemplo 2 Separa: Aplicando las propiedades (2) (5): = CPM Educational Program. All rights reserved. CC en español, Matemática Integrada I

9 Capítulo Ejemplo 3 ( ) 3 Aplicando la propiedad (3): Aplicando la propiedad (3) una vez más: Ejemplo 5 Simplifica: Separa: Aplicando la propiedad (2): Aplicando la propiedad (4): ( ) 3 ( 4 ) = = 29 3 Ejemplo 4 Aplicando la propiedad (5): Aplicando la propiedad (3): Aplicando la propiedad (3) una vez más: ( 2 3 ) 2 ( 2 3 ) 2 ( ) Problemas Simplifica las siguientes epresiones. Las respuestas finales no deberían incluir ningún paréntesis ni eponente negativo b 4 b 3 b ( 5 ) 2 5. (3a) 4 6. m 8 m m 8 6m 3 8. (3 2 ) ( 4 ) 2 ( 3 ) (4c4 )(ac 3 )(3a 5 c) 2. (7 3 5 ) 2 3. (4 2 )(2) 3 4. ( 4 2 ) ( 5m 3 n m 5 )3 7. (3a 2 3 ) 2 (2a 4 ) 3 8. (2a 7 )(3a 2 ) 6a 3 ( 3 4 )4 9. ( )2 20. (2 5 3 ) 3 (4 4 ) (2) (2 3 ) ( ) 2 Guía para padres con práctica adicional 205 CPM Educational Program. All rights reserved. 9

10 Respuestas b a 4 6. m m a 6 c a n 3 m a Notación científica La notación científica es una forma de escribir números mu grandes o mu pequeños en forma compacta. Se dice que un número está en notación científica cuando se escribe como producto de dos factores, tal como se indica a continuación. El primer factor es menor de 0 maor de o igual a. El segundo factor tiene una base de 0 un eponente entero. Los factores están separados por un signo de multiplicar. Un eponente positivo indica un número cuo valor absoluto es maor de. Un eponente negativo indica un número cuo valor absoluto es menor de. Notación científica Formato estándar ,000,000, CPM Educational Program. All rights reserved. CC en español, Matemática Integrada I

11 Capítulo Es importante señalar que el eponente no significa necesariamente utilizar esa cantidad de ceros. El número significa ,000,000,000. Por consiguiente, dos de las once posiciones decimales en el formato estándar del número son el 3 el 2 de El formato estándar en este caso es 532,000,000,000. En este ejemplo, desplazas el punto decimal once posiciones a la derecha para escribir el formato estándar del número. El número significa Se desplaza el punto decimal a la izquierda 5 posiciones para escribir el formato estándar. En este caso, el formato estándar es Para más información, consulta el recuadro del Apunte de matemáticas de la Lección.3.. Ejemplo Escribe los siguientes números en formato estándar ,000, Al tomar un número en formato estándar escribirlo en notación científica, recuerda que solo se permite un dígito a la izquierda del punto decimal. Ejemplo 2 Escribe los siguientes números en notación científica. 52,050, El eponente denota la cantidad de lugares que desplazaste el punto decimal en formato estándar. En el primer ejemplo aquí arriba, el punto decimal se encuentra al final del número se desplazó 7 lugares. En el segundo ejemplo más arriba, el eponente es negativa porque el número original es demasiado pequeño, es decir, menor de. Guía para padres con práctica adicional 205 CPM Educational Program. All rights reserved.

12 Problemas Escribe los siguientes números en formato estándar Escribe los siguientes números en notación científica ,000,000, ,600, ,700,000,000,000 Nota: En tu calculadora científica, cuando aparece (o 4.357E2) (o 3.65E 3), son números epresados en notación científica. El primer número significa el segundo significa La calculadora lo hace porque no ha suficiente lugar en la pantalla para mostrar el número completo. Respuestas. 785,000,000,000 2.,235,000, CPM Educational Program. All rights reserved. CC en español, Matemática Integrada I

PROPIEDADES DE LA POTENCIA y 3.1.2

PROPIEDADES DE LA POTENCIA y 3.1.2 Capítulo PROPIEDADES DE LA POTENCIA.. y.. Por lo general, simplificar una epresión que contiene eponentes significa eliminar los paréntesis y eponentes negativos, de ser posible. A continuación se mencionan

Más detalles

FUNCIONES INVERSAS

FUNCIONES INVERSAS Capítulo 5 FUNCIONES INVERSAS 5.. 5..3 En esta sección, los alumnos eplorarán las funciones inversas, es decir, funciones que deshacen las acciones de otras funciones. Los valores de salida de la función

Más detalles

TRIGONOMETRÍA ANALÍTICA

TRIGONOMETRÍA ANALÍTICA TRIGONOMETRÍA ANALÍTICA....4 El estudio de las funciones trigonométricas comenzó en el Capítulo 9, con los radianes la transformación de funciones trigonométricas. Este capítulo se concentra en la resolución

Más detalles

PENDIENTE MEDIDA DE LA INCLINACIÓN

PENDIENTE MEDIDA DE LA INCLINACIÓN Capítulo 2 PENDIENTE MEDIDA DE LA INCLINACIÓN 2.1.2 2.1.4 Los alumnos utilizaron la ecuación = m + b para graficar rectas describir patrones en los cursos anteriores. La Lección 2.1.1 es un repaso. Cuando

Más detalles

USO DE LA PROPIEDAD DE PRODUCTO CERO 5.1.3

USO DE LA PROPIEDAD DE PRODUCTO CERO 5.1.3 USO DE LA PROPIEDAD DE PRODUCTO CERO 5.1.3 El gráfico de una función cuadrática, una parábola, es una curva simétrica. Su punto más alto o más bajo recibe el nombre de vértice. El gráfico de una parábola

Más detalles

TRIGONOMETRÍA ANALÍTICA

TRIGONOMETRÍA ANALÍTICA TRIGONOMETRÍA ANALÍTICA....4 Los alumnos comenzaron a estudiar funciones trigonométricas en el Capítulo 7, cuando aprendieron sobre radianes la transformación de funciones trigonométricas. Aquí aprenderán

Más detalles

ASOCIACIÓN EN UNA TABLA DE DOBLE ENTRADA

ASOCIACIÓN EN UNA TABLA DE DOBLE ENTRADA ASOCIACIÓN EN UNA TABLA DE DOBLE ENTRADA 10.1.1 Los datos basados en medidas como altura, velocidad, y temperatura son numéricos. En el Capítulo 6, describiste asociaciones entre dos variables numéricas.

Más detalles

ORDEN DE LAS OPERACIONES y 3.1.2

ORDEN DE LAS OPERACIONES y 3.1.2 ORDEN DE LAS OPERACIONES.. y.. Cuando a los estudiantes se les da una expresión como + por primera vez, algunos estudiantes piensan que la respuesta es y algunos piensan que la respuesta es. Por esta razón

Más detalles

RESOLUCIÓN DE DESIGUALDADES CON UNA VARIABLE y 9.1.2

RESOLUCIÓN DE DESIGUALDADES CON UNA VARIABLE y 9.1.2 RESOLUCIÓN DE DESIGUALDADES CON UNA VARIABLE 9.1.1 9.1.2 Para resolver una desigualdad con una variable, debes convertirla primero en una ecuación (un enunciado matemático con un signo = ) resolverla.

Más detalles

CAPÍTULO 3: PORCIONES Y NÚMEROS ENTEROS

CAPÍTULO 3: PORCIONES Y NÚMEROS ENTEROS CAPÍTULO 3: PORCIONES Y NÚMEROS ENTEROS Fecha: Caja de herramientas 2014 CPM Educational Program. All rights reserved. 22 Capítulo 3: Porciones y números enteros Fecha: 23 2014 CPM Educational Program.

Más detalles

PENDIENTE MEDIDA DE LA INCLINACIÓN 2.1.2 2.1.4

PENDIENTE MEDIDA DE LA INCLINACIÓN 2.1.2 2.1.4 PENDIENTE MEDIDA DE LA INCLINACIÓN 2.1.2 2.1.4 Los alumnos utilizaron la ecuación = m + b para graficar rectas describir patrones en los cursos anteriores. La Lección 2.1.1 es un repaso. Cuando la ecuación

Más detalles

TRIÁNGULOS RECTÁNGULOS ESPECIALES Y 6.1.1 y 6.1.2 TERNAS PITAGÓRICAS

TRIÁNGULOS RECTÁNGULOS ESPECIALES Y 6.1.1 y 6.1.2 TERNAS PITAGÓRICAS TRIÁNGULOS RECTÁNGULOS ESPECIALES Y 6.1.1 6.1.2 TERNAS PITAGÓRICAS Eisten dos triángulos rectángulos especiales que suelen aparecer en matemáticas: el triángulo --90 el triángulo --90. Todos los triángulos

Más detalles

DIVISIÓN POR FRACCIONES

DIVISIÓN POR FRACCIONES DIVISIÓN POR FRACCIONES 6.. 6.. División por fracciones introduce tres métodos que ayudan a los estudiantes como se dividen por fracciones. En general, piense en la división 8 como, en 8, cuantos grupos

Más detalles

FACTORIZACIÓN DE EXPRESIONES CUADRÁTICAS

FACTORIZACIÓN DE EXPRESIONES CUADRÁTICAS FACTORIZACIÓN DE EXPRESIONES CUADRÁTICAS 4.1.1 4.1.4 En las Lecciones 4.1.1 a 4.1.4, los alumnos factorizarán epresiones cuadráticas. Esto los prepara para resolver ecuaciones cuadráticas en el Capítulo

Más detalles

ESCRITURA Y GRAFICACIÓN DE ECUACIONES LINEALES EN UNA SUPERFICIE PLANA

ESCRITURA Y GRAFICACIÓN DE ECUACIONES LINEALES EN UNA SUPERFICIE PLANA ESCRITURA Y GRAFICACIÓN DE ECUACIONES LINEALES EN UNA SUPERFICIE PLANA La pendiente es un número que indica lo inclinado (o plano) de una recta, al igual que su dirección (hacia arriba o hacia abajo) de

Más detalles

USO DE LA FÓRMULA CUADRÁTICA y 9.1.3

USO DE LA FÓRMULA CUADRÁTICA y 9.1.3 Capítulo 9 USO DE LA FÓRMULA CUADRÁTICA 9.1.2 y 9.1.3 Cuando una ecuación cuadrática no es factorizable, necesitas otro método para hallar x. La Fórmula cuadrática puede usarse para calcular las raíces

Más detalles

TEMA 1 CONJUNTOS NUMÉRICOS

TEMA 1 CONJUNTOS NUMÉRICOS TEMA 1 CONJUNTOS NUMÉRICOS. Objetivos / Criterios de evaluación O.1.1 Realizar correctamente operaciones con fracciones: Suma, resta, producto, cociente, potencia y radicación. O.1.2 Resolver operaciones

Más detalles

FACTORIZACIÓN DE EXPRESIONES CUADRÁTICAS

FACTORIZACIÓN DE EXPRESIONES CUADRÁTICAS Capítulo 8 FACTORIZACIÓN DE EXPRESIONES CUADRÁTICAS 8.. 8..4 En el Capítulo 8, los alumnos aprenderán a reescribir epresiones cuadráticas y resolver ecuaciones cuadráticas. Las funciones cuadráticas son

Más detalles

1. Determinar el conjunto de valores que pueden darse a la variable independiente x. Es decir, el dominio.

1. Determinar el conjunto de valores que pueden darse a la variable independiente x. Es decir, el dominio. GRÁFICA Y RANGO DE UNA FUNCIÓN RACIONAL Sugerencia para quien imparte el curso. Antes de abordar esta parte del curso, se sugiere comentar con los estudiantes algunos aspectos como los siguientes: Se esperan

Más detalles

SIMPLIFICACIÓN DE EXPRESIONES

SIMPLIFICACIÓN DE EXPRESIONES SIMPLIFICACIÓN DE EXPRESIONES.. Para simplificar epresiones racionales, halla factores iguales en el numerador y el denominador, y escríbelas como fracciones iguales a. Por ejemplo: 6 6 = = = 3 3 = Las

Más detalles

TRANSFORMACIONES DE f (x) = x 2 9.1.1 9.1.2. Ejemplo 1

TRANSFORMACIONES DE f (x) = x 2 9.1.1 9.1.2. Ejemplo 1 Capítulo 9 TRANSFORMACIONES DE f () = 2 9.1.1 9.1.2 A fin de lograr un buen dominio de la modelación de datos relaciones en situaciones cotidianas, los alumnos deben ser capaces de reconocer transformar

Más detalles

Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales.

Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales. Tema 1: Números Reales 1.1 Conjunto de los números Naturales (N): 0, 1, 2, 3. Números positivos sin decimales. Sirven para contar. Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos

Más detalles

DESCRIPCIÓN Y CLASIFICACIÓN DE POLÍGONOS

DESCRIPCIÓN Y CLASIFICACIÓN DE POLÍGONOS DESCRIPCIÓN Y CLASIFICACIÓN DE POLÍGONOS 1.1.1 1.1.2 Las figuras geométricas, como los polígonos, aparecen en muchos lugares. En estas lecciones, los alumnos estudiarán más atentamente los polígonos y

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio A-09 - Incorporado a la Enseñanza Oficial COLEGIO SAN PATRICIO - 0 - Prof. Celia R. Sánchez MATEMÁTICA - TRABAJO PRÁCTICO Nº 8 AÑO FUNCIÓN EXPONENCIAL Y LOGARÍTMICA - ECUACIONES POTENCIACIÓN: Ejercicio

Más detalles

SIMPLIFICACIÓN DE EXPRESIONES ALGEBRAICAS

SIMPLIFICACIÓN DE EXPRESIONES ALGEBRAICAS SIMPLIFICACIÓN DE EXPRESIONES ALGEBRAICAS A.1.1 A.1.2 Los azulejos algebraicos ofrecen a los alumnos la oportunidad de ver eprion algebraicas abstractas ecuacion con dos variabl. El uso regular de azulejos

Más detalles

( ) es aceptable. El grado del

( ) es aceptable. El grado del POLINOMIOS 8.1.1 8.1.3 El capítulo eplora funciones polinómicas en maor profundidad. Los alumnos aprenderán cómo bosquejar funciones polinómicas sin su herramienta de graficación, utilizando la forma factorizada

Más detalles

TRABAJO DE MATEMÁTICAS. PENDIENTES DE 2º E.S.O. (1ª parte)

TRABAJO DE MATEMÁTICAS. PENDIENTES DE 2º E.S.O. (1ª parte) TRABAJO DE MATEMÁTICAS PENDIENTES DE º E.S.O. (ª parte) NÚMEROS ENTEROS.-) Realiza las operaciones siguientes () (0) (-) ( ) (-) ( -) (-) ( -) (-) () - - - -0 - - - ( -) ( ) ( -) ( ) ( ) ( - ) ( - ) (

Más detalles

CAPÍTULO 4: VARIABLES Y RAZONES

CAPÍTULO 4: VARIABLES Y RAZONES Capítulo 4: Variables y razones CAPÍTULO 4: VARIABLES Y RAZONES Fecha: 33 2014 CPM Educational Program. All rights reserved. Core Connections en español, Curso 2 Fecha: Caja de herramientas 2014 CPM Educational

Más detalles

LOS NÚMEROS ENTEROS. Para restar un número entero, se quita el paréntesis y se pone al número el signo contrario al que tenía.

LOS NÚMEROS ENTEROS. Para restar un número entero, se quita el paréntesis y se pone al número el signo contrario al que tenía. Melilla Los números Enteros y operaciones elementales LOS NÚMEROS ENTEROS 1º LOS NÚMEROS ENTEROS. El conjunto de los números enteros Z está formado por los números naturales (enteros positivos) el cero

Más detalles

FRACCIONES. Para hallar la fracción de una cantidad se divide la cantidad entre el denominador y el resultado se multiplica por el numerador.

FRACCIONES. Para hallar la fracción de una cantidad se divide la cantidad entre el denominador y el resultado se multiplica por el numerador. FRACCIONES FRACCION Una fracción es una epresión formada por dos números separados por una raa horizontal, al número de abajo se le llama denominador nos indica el número de partes iguales en que se divide

Más detalles

Contenido 1. Definición Tipos de fracciones Fracción igual a la unidad 9 4. Fracción propia Fracción impropia Frac

Contenido 1. Definición Tipos de fracciones Fracción igual a la unidad 9 4. Fracción propia Fracción impropia Frac FRACCIÓN Contenido 1. Definición... 3 2. Tipos de fracciones..... 8 3. Fracción igual a la unidad 9 4. Fracción propia... 10 5. Fracción impropia... 11 6. Fracciones decimales... 14 7. Fracciones equivalentes...

Más detalles

Colegio Universitario Boston. Funciones

Colegio Universitario Boston. Funciones 70 Concepto de Función Una función es una correspondencia entre dos conjuntos, tal que relaciona, a cada elemento del conjunto A con un único elemento del conjunto Para indicar que se ha establecido una

Más detalles

EJEMPLO 2: Ing. Mario René De León García. 1. FUNCIÓN EXPONENCIAL EJEMPLO 1:

EJEMPLO 2: Ing. Mario René De León García. 1. FUNCIÓN EXPONENCIAL EJEMPLO 1: FUNCIONES EXPONENCIAL Y LOGARÍTMICA Por: Ing. Mario René De León García.. FUNCIÓN EXPONENCIAL Una función eponencial tiene la forma, donde a es la base de la potencia la variable es el eponente. Esta función

Más detalles

Taller de Matemáticas IV

Taller de Matemáticas IV Taller de Matemáticas IV Universidad CNCI de Méico Temario. Funciones polinomiales factorizables.. Teorema del residuo.. Teorema del factor... Raíces (ceros) racionales de funciones polinomiales.. Teorema

Más detalles

Programa Entrenamiento MT-21

Programa Entrenamiento MT-21 Programa Entrenamiento MT-1 SOLUCIONARIO Guía de ejercitación avanzada Función potencia y función raíz cuadrada SGUICEN05MT1-A16V1 TABLA DE CORRECCIÓN Guía de ejercitación Función potencia y función raíz

Más detalles

Tema 12. Funciones (II). Recta, parábola, hipérbola, exponenciales y logaritmos.

Tema 12. Funciones (II). Recta, parábola, hipérbola, exponenciales y logaritmos. Tema. Funciones (II). Recta, parábola, hipérbola, eponenciales logaritmos. Tabla de contenido. Traslados de las gráficas horizontales verticales.... Funciones lineales. La recta.... Función parabólica...

Más detalles

IES LA ASUNCIÓN w w.ieslaasuncion.org. Bloque I. Números y medidas. Tema 4: Potencias y raíces. Uso de la calculadora TEORÍA

IES LA ASUNCIÓN  w w.ieslaasuncion.org. Bloque I. Números y medidas. Tema 4: Potencias y raíces. Uso de la calculadora TEORÍA MATEMÁTICAS º ESO Bloque I. Números y medidas. Tema : Potencias y raíces. Uso de la calculadora TEORÍA 1. POTENCIAS * Una potencia es una multiplicación de factores iguales. Se escribe a n e indica que

Más detalles

GESTIÓN ACADÉMICA GUÍA DIDÁCTICA

GESTIÓN ACADÉMICA GUÍA DIDÁCTICA PÁGINA: 1 de 8 Nombres y Apellidos del Estudiante: Docente: Área: Matemáticas Grado:9º Periodo: 3º GUIA # 2 Duración: 10 HORAS Asignatura: Matemáticas ESTÁNDAR: Identifico y utilizo la potenciación, la

Más detalles

3.3 Funciones crecientes y decrecientes y el criterio de la primera derivada

3.3 Funciones crecientes y decrecientes y el criterio de la primera derivada SECCIÓN. Funciones crecientes decrecientes el criterio de la primera derivada 79. Funciones crecientes decrecientes el criterio de la primera derivada Determinar los intervalos sobre los cuales una función

Más detalles

Material N 29 GUÍA TEÓRICO PRÁCTICA Nº 23

Material N 29 GUÍA TEÓRICO PRÁCTICA Nº 23 C u r s o : Matemática Material N 9 GUÍA TEÓRICO PRÁCTICA Nº 3 UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA Una ecuación de segundo grado es una ecuación susceptible de llevar

Más detalles

CONJUNTOS NUMÉRICOS. La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria.

CONJUNTOS NUMÉRICOS. La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria. CONJUNTOS NUMÉRICOS La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria. Por ejemplo, usamos números para contar una determinada cantidad

Más detalles

ƒ : {(1, 4), (2, 5), (3, 6), (4, 7)}.

ƒ : {(1, 4), (2, 5), (3, 6), (4, 7)}. SECCIÓN 5. Funciones inversas 5. Funciones inversas Verificar que una función es la inversa de otra. Determinar si una función tiene una función inversa. Encontrar la derivada de una función inversa. f

Más detalles

Listo para seguir? Intervención de destrezas

Listo para seguir? Intervención de destrezas 9A Listo para seguir? Intervención de destrezas 9-1 Cómo identificar funciones cuadráticas Busca estas palabras de vocabulario en la Lección 9-1 el Glosario multilingüe. Vocabulario función cuadrática

Más detalles

FRACCIONES EQUIVALENTES 3.1.1

FRACCIONES EQUIVALENTES 3.1.1 FRACCIONES EQUIVALENTES 3.. Fracciones que nombran el mismo valor se llaman fracciones equivalentes, como 2 3 = 6 9. Un método para encontrar fracciones equivalentes es usar la identidad multiplicativa

Más detalles

Unidad 3: Funciones exponenciales Tema: Función exponencial Lección: Definición y gráfica

Unidad 3: Funciones exponenciales Tema: Función exponencial Lección: Definición y gráfica 1 Unidad 3: Funciones eponenciales Tema: Función eponencial Lección: Definición gráfica 10 Función eponencial La función eponencial, es conocida formalmente como la función real e, donde e es el número

Más detalles

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y).

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y). TEMA 8: FUNCIONES. 8. Función real de variable real. 8. Dominio de una función. 8.3 Características de una función: signo, monotonía, acotación, simetría y periodicidad. 8.4 Operaciones con funciones:

Más detalles

FU CIÓ CUADRÁTICA. y = a.x 2 + b.x + c. Término Cuadrático Término Lineal Término Independiente. Matestay. a = 1 b = 4 c = 3. d 2.

FU CIÓ CUADRÁTICA. y = a.x 2 + b.x + c. Término Cuadrático Término Lineal Término Independiente. Matestay. a = 1 b = 4 c = 3. d 2. FU CIÓ CUADRÁTICA La función cuadrática es una función mu común en Matemática. Se trata de una función de segundo grado: la "" aparece elevada al cuadrado como máima potencia. Su representación gráfica

Más detalles

INVESTIGACIONES Y FUNCIONES

INVESTIGACIONES Y FUNCIONES Capítulo 1 INVESTIGACIONES Y FUNCIONES 1.1.1 1.1.4 Esta sección inicial presenta a los alumnos muchas de las grandes ideas del curso Álgebra 2, así como distintas formas de pensar varias estrategias de

Más detalles

Guía Práctica N 11 ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA

Guía Práctica N 11 ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA Fuente: PreUniversitario Pedro de Valdivia Guía Práctica N 11 ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA Una ecuación de segundo grado es una ecuación susceptible de llevar a la forma a + b + c = 0,

Más detalles

Chapter Audio Summary for McDougal Littell Pre-Algebra

Chapter Audio Summary for McDougal Littell Pre-Algebra Chapter Audio Summary for McDougal Littell Pre-Algebra Chapter 5 Rational Numbers and Equations En el capítulo 5 aprendiste a escribir, comparar y ordenar números racionales. Después aprendiste a sumar

Más detalles

COMPARAR CANTIDADES (EN UN TABLERO DE EXPRESIONES) y 6.1.2

COMPARAR CANTIDADES (EN UN TABLERO DE EXPRESIONES) y 6.1.2 COMPARAR CANTIDADES (EN UN TABLERO DE EXPRESIONES) 6.1.1 y 6.1.2 Combinando dos Tableros de epressions a un Tablero de comparación de epresiones crea un modelo concreto para simplificar (y después resolver)

Más detalles

UNIDAD DIDÁCTICA #1 CONTENIDO

UNIDAD DIDÁCTICA #1 CONTENIDO UNIDAD DIDÁCTICA #1 CONTENIDO OPERACIONES CON DECIMALES MULTIPLICACION DE DECIMALES DIVISIÓN DE DECIMALES OPERACIONES COMBINADAS CON DECIMALES POTENCIACIÓN DE DECIMALES HOJA DE EVALUACIÓN BIBLIOGRAFÍA

Más detalles

ÁNGULOS Halla la medida de los ángulos a, b, y/o c de cada figura a continuación. Justifica tus respuestas.

ÁNGULOS Halla la medida de los ángulos a, b, y/o c de cada figura a continuación. Justifica tus respuestas. ÁNGULOS.... La aplicación de la geometría en situaciones cotidianas suele involucrar la medición de distintos ángulos. En este capítulo, comenzamos a estudiar las medidas de los ángulos. Después de describir

Más detalles

1.5 Límites infinitos

1.5 Límites infinitos SECCIÓN.5 Límites infinitos 8.5 Límites infinitos Determinar ites infinitos por la izquierda por la derecha. Encontrar dibujar las asíntotas verticales de la gráfica de una función., cuando Límites infinitos

Más detalles

Lección 10: División de Polinomios. Dra. Noemí L. Ruiz Limardo 2009

Lección 10: División de Polinomios. Dra. Noemí L. Ruiz Limardo 2009 Lección 10: División de Polinomios Dra. Noemí L. Ruiz Limardo 009 Objetivos de la lección Al finalizar esta lección los estudiantes: Dividirán polinomios de dos o más términos por polinomios de uno y dos

Más detalles

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel Estimado alumno: Aquí encontrarás las claves de corrección, las habilidades y los procedimientos de resolución asociados a cada pregunta, no obstante, para reforzar tu aprendizaje es fundamental que asistas

Más detalles

INTERESES SIMPLES Y COMPUESTOS

INTERESES SIMPLES Y COMPUESTOS INTERESES SIMPLES Y COMPUESTOS 8.1.1 8.1.3 En Curso 2 estudiantes son introducidos al interés simple, el interés se paga sólo sobre el importe inicial invertido. La fórmula para el interés simple es: I

Más detalles

2.1. LÍMITE CUANDO X TIENDE A INFINITO (Valores grandes de la variable x)

2.1. LÍMITE CUANDO X TIENDE A INFINITO (Valores grandes de la variable x) Bloque : Cálculo Diferencial Tema : Límite y Continuidad de una función.. LÍMITE CUANDO X TIENDE A INFINITO (Valores grandes de la variable ) La forma de comportarse una función para valores muy grandes

Más detalles

Bloque 1. Aritmética y Álgebra

Bloque 1. Aritmética y Álgebra Bloque. Aritmética y Álgebra 6. Los números reales: radicales. Definición de radical Un radical es una epresión de la forma, en la que n y a ; con tal que cuando a sea negativo, n ha de ser impar. Obsérvese

Más detalles

Una función arroja un valor (y sólo uno) por cada valor que se le introduce. En otras palabras, para cada valor de x, hay un solo valor de y.

Una función arroja un valor (y sólo uno) por cada valor que se le introduce. En otras palabras, para cada valor de x, hay un solo valor de y. Qué es una función? Una función es una relación entre dos variables: la variable independiente, y la variable dependiente y. Sin embargo, no toda relación es una función. Una función arroja un valor (y

Más detalles

Este trabajo debe realizarce después de haber trabajado el taller virtual

Este trabajo debe realizarce después de haber trabajado el taller virtual Este trabajo debe realizarce después de haber trabajado el taller virtual qué se encuentra en la http://ceciba.escuelaing.edu.co/mre página bajo la pestaña de Talleres Virtuales.. Para las guientes funciones:

Más detalles

EXPRESIONES RACIONALES

EXPRESIONES RACIONALES EXPRESIONES RACIONALES a El conjunto de las fracciones b, donde a b son enteros (0, ±1, ±, ±, ) b 0, se le conoce como los números racionales. En matemática, la palabra racional se asocia a epresiones

Más detalles

Para más información vea el recuadro de Apuntes de Matemáticas de la Lección del texto Core Connections en español, Curso 3.

Para más información vea el recuadro de Apuntes de Matemáticas de la Lección del texto Core Connections en español, Curso 3. CILINDROS VOLUMEN Y ÁREA SUPERFICIAL VOLUMEN DE UN CILINDRO El volumen de un cilindro es el área de su base multiplicado por su altura: V = B h Dado que la base de un cilindro es un círculo de área A =

Más detalles

TEMA 1. Números Reales. Teoría. Matemáticas

TEMA 1. Números Reales. Teoría. Matemáticas 1 1.- Los números reales Cuáles son los números reales? Los números reales son todos los números racionales y todos los números irracionales. El conjunto de los números reales se designa con el símbolo

Más detalles

Una variable es una cantidad que se simboliza por una literal y que puede tomar diferentes valores.

Una variable es una cantidad que se simboliza por una literal y que puede tomar diferentes valores. MATEMÁTICAS BÁSICAS TEORÍA DE ECUACIONES DEFINICIÓN DE OLINOMIO Y DE ECUACIÓN Una variable es una cantidad que se simboliza por una literal y que puede tomar diferentes valores. Una constante es una magnitud

Más detalles

SOLUCIONARIO Función exponencial

SOLUCIONARIO Función exponencial SOLUCIONARIO Función eponencial SGUICES06MT1-AV1 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA Función eponencial Ítem Alternativa 1 E C C 4 D C 6 C 7 D 8 E 9 D Comprensión 10 A 11 C 1 B Comprensión 1 A 14 D Comprensión

Más detalles

ECUACIONES DE PRIMER Y SEGUNDO GRADO

ECUACIONES DE PRIMER Y SEGUNDO GRADO 7. UNIDAD 7 ECUACIONES DE PRIMER Y SEGUNDO GRADO Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas que involucren la solución de ecuaciones de primer grado y de segundo grado

Más detalles

EJERCICIOS RESUELTOS. DETERMINACIÓN ANALÍTICA DEL DOMINIO Y RANGO DE FUNCIONES.

EJERCICIOS RESUELTOS. DETERMINACIÓN ANALÍTICA DEL DOMINIO Y RANGO DE FUNCIONES. EJERCICIOS RESUELTOS. DETERMINACIÓN ANALÍTICA DEL DOMINIO Y RANGO DE FUNCIONES. DADAS LAS FUNCIONES, DETERMINAR SU DOMINIO Y RANGO. a) b) f 4 c) p d) g e) f) h g) q SOLUCIÓN: a) EMPLEANDO AL ALGORITMO

Más detalles

GUÍAS DE ESTUDIO PROGRAMA DE ALFABETIZACIÓN, EDUCACIÓN BÁSICA Y MEDIA PARA JÓVENES Y ADULTOS

GUÍAS DE ESTUDIO PROGRAMA DE ALFABETIZACIÓN, EDUCACIÓN BÁSICA Y MEDIA PARA JÓVENES Y ADULTOS GUÍAS DE ESTUDIO Código PGA-0-R0 1 INSTITUCIÓN EDUCATIVA CASD PROGRAMA DE ALFABETIZACIÓN, EDUCACIÓN BÁSICA Y MEDIA PARA JÓVENES Y ADULTOS UNIDAD DE TRABAJO Nº PERIODO 1 ÁREA INTEGRADA: MATEMÁTICAS. ASIGNATURA:

Más detalles

lím lím Veamos como ejemplo el límite de la función polinómica f(x)=3x 2-8 en 1: x 1 (3x2 )-lím 8 x 1 =2 x 1 x)2 -lím x 1 8 =

lím lím Veamos como ejemplo el límite de la función polinómica f(x)=3x 2-8 en 1: x 1 (3x2 )-lím 8 x 1 =2 x 1 x)2 -lím x 1 8 = LÍMITES LECCIÓN 7 Índice: Cálculo de ites en un punto. Epresión indeterminada L/0. Epresión indeterminada 0/0. Algunos ites de funciones irracionales. Otras técnicas básicas para el cálculo de ites. Problemas..-

Más detalles

f(x)=a n x n +a n-1 x n-1 +a n-2 x n-2 +...a 2 x 2 +a 1 x 1 +a 0

f(x)=a n x n +a n-1 x n-1 +a n-2 x n-2 +...a 2 x 2 +a 1 x 1 +a 0 FUNCIÓN POLINOMIAL. DEFINICIÓN. Las funciones polinomiales su representación gráfica, tienen gran importancia en la matemática. Estas funciones son modelos que describen relaciones entre dos variables

Más detalles

Inecuaciones en. Desigualdad: se llama desigualdad a toda relación entre expresiones numéricas o algebraicas. Propiedades de las desigualdades:

Inecuaciones en. Desigualdad: se llama desigualdad a toda relación entre expresiones numéricas o algebraicas. Propiedades de las desigualdades: Inecuaciones en Introducción Desigualdad: se llama desigualdad a toda relación entre epresiones numéricas o algebraicas unidas por uno de los cuatro signos de desigualdad,,,, Por ejemplo: 6 ; ; 8, etc....

Más detalles

Para el estudiante. 0-1 Fórmulas geométricas...z3. 0-7 Números primos y números compuestos...z17. 0-8 Cómo factorizar...z19

Para el estudiante. 0-1 Fórmulas geométricas...z3. 0-7 Números primos y números compuestos...z17. 0-8 Cómo factorizar...z19 Para el estudiante El Capítulo 0 contiene lecciones breves para repasar las destrezas matemáticas de los cursos anteriores. Es importante conocer estos contenidos para tener éxito en Álgebra 1. Para mantener

Más detalles

UNA ECUACIÓN es una igualdad de dos expresiones algebraicas.

UNA ECUACIÓN es una igualdad de dos expresiones algebraicas. UNA EXPRESIÓN ALGEBRAICA es una combinación de números, variables (o símbolos) y operaciones como la suma, resta, multiplicación, división, potenciación y radicación. Ejemplos. UNA ECUACIÓN es una igualdad

Más detalles

Ejercicios resueltos de funciones

Ejercicios resueltos de funciones Ejercicios resueltos de funciones 1) Representa en un eje de coordenadas los siguientes puntos: A(1,5), B(-3,3), C(0, -4), D (2,0). 2) Representa en dos ejes de coordenadas las funciones siguientes: a)

Más detalles

TEMA 2. Números racionales. Teoría. Matemáticas

TEMA 2. Números racionales. Teoría. Matemáticas 1 1.- Números racionales Se llama número racional a todo número que puede representarse como el cociente de dos enteros, con denominador distinto de cero. Se representa por Las fracciones también pueden

Más detalles

LOS NUMEROS RACIONALES: Representación de racionales en la recta. Amplificar y simplificar un racional.

LOS NUMEROS RACIONALES: Representación de racionales en la recta. Amplificar y simplificar un racional. LOS NUMEROS RACIONALES: Definición de número racional. Representación de racionales en la recta. Racionales equivalentes. Amplificar y simplificar un racional. Números mixtos. Orden en los racionales.

Más detalles

Funciones racionales

Funciones racionales Funciones racionales Una función racional es una función que se puede epresar de la forma ) ( ) ( ) ( g f p donde f() y g() son funciones polinómicas. g f y 9 4 ) ( 3 ) ( 1 3 5 3 ) ( 4 3 4 ) ( 3 4 4 )

Más detalles

(Apuntes en revisión para orientar el aprendizaje) Capítulo IV Variación de funciones. Extremos

(Apuntes en revisión para orientar el aprendizaje) Capítulo IV Variación de funciones. Extremos (Apuntes en revisión para orientar el aprendizaje) Capítulo IV Variación de unciones. Etremos INTRODUCCIÓN En múltiples problemas de ingeniería se requiere optimizar una o varias de las variables que intervienen

Más detalles

8.1. Traslación de puntos. Investigación: Figuras en movimiento CONDENSADA

8.1. Traslación de puntos. Investigación: Figuras en movimiento CONDENSADA LECCIÓN CONDENSADA 8.1 Traslación de puntos En esta lección trasladarás figuras en el plano de coordenadas definirás una traslación al describir cómo afecta un punto general (, ) Una regla matemática que

Más detalles

Materia: Matemática de Octavo Tema: Conjunto Q (Números Racionales)

Materia: Matemática de Octavo Tema: Conjunto Q (Números Racionales) Materia: Matemática de Octavo Tema: Conjunto Q (Números Racionales) Vamos a recordar los conjuntos numéricos estudiados hasta el momento. (1.) Conjunto de los números Naturales Son aquellos que utilizamos

Más detalles

Expresiones racionales. MATE 0008 Departamento de Matemáticas UPRA

Expresiones racionales. MATE 0008 Departamento de Matemáticas UPRA Epresiones racionales MATE 0008 Departamento de Matemáticas UPRA EXPRESIONES RACIONALES En las matemáticas, la palabra racional se asocia a epresiones con forma de fracción; o sea que tienen un numerador

Más detalles

4º Grado. Slide 1 / 152. Slide 2 / 152. Slide 3 / 152. Conceptos de Fracción y Decimal. -Revisión de. Fracciones

4º Grado. Slide 1 / 152. Slide 2 / 152. Slide 3 / 152. Conceptos de Fracción y Decimal. -Revisión de. Fracciones New Jersey Centro para Enseñanza y Aprendizaje Slide 1 / 152 Iniciativa de Matemática Progresiva Este material está disponible gratuitamente en www.njctl.org y está pensado para el uso no comercial de

Más detalles

FUNCIONES EXPONENCIALES

FUNCIONES EXPONENCIALES FUNCIONES EXPONENCIALES 8.1.1 8.1.6 En estas secciones, los alumnos generalizarán lo que han aprendido sobre las progresiones geométricas para investigar funciones exponenciales. Los alumnos estudiarán

Más detalles

TEMA 3: NÚMEROS REALES

TEMA 3: NÚMEROS REALES . Intervalos y semirrectas TEMA : NÚMEROS REALES Ejemplo Dados los siguientes intervalos y semirrectas, exprésalos en forma de conjunto y represéntalos sobre la recta real:. El intervalo abierto de extremos

Más detalles

Funciones, límites y continuidad

Funciones, límites y continuidad 8/0/016 Funciones, límites y continuidad C U R S O 0 1 5-0 1 6 Funciones, limites y continuidad Los puntos rojos son los que entran en el eamen de º evaluación 1) Concepto de función. Dominio y recorrido.

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos NÚMEROS REALES Como se ha señalado anteriormente la necesidad de resolver diversos problemas de origen aritmético y geométrico lleva a ir ampliando sucesivamente los conjuntos numéricos, N Z Q, y a definir

Más detalles

PROPIEDADES DE LOS NUMEROS REALES

PROPIEDADES DE LOS NUMEROS REALES PROPIEDADES DE LOS NUMEROS REALES Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Prof. Yuitza T. Humarán Martínez Adaptado por Prof. Caroline Rodriguez Naturales N={1, 2, 3, 4, } {0}

Más detalles

FUNCIÓN EXPONENCIAL. Ing. Caribay Godoy Rangel

FUNCIÓN EXPONENCIAL. Ing. Caribay Godoy Rangel FUNCIÓN EXPONENCIAL Definir e identificar una función exponencial, establecer su dominio y rango. Conocer las características de la gráfica de una función exponencial. Explorar el cambio gráfico que se

Más detalles

Números Naturales. Los números enteros

Números Naturales. Los números enteros Números Naturales Con los números naturales contamos los elementos de un conjunto (número cardinal). O bien expresamos la posición u orden que ocupa un elemento en un conjunto (ordinal). El conjunto de

Más detalles

UNIDADES 1 y 2: FRACCIONES Y DECIMALES. POTENCIAS Y RAÍCES. NÚMEROS APROXIMADOS. 1º.- Ordena de menor a mayor las siguientes fracciones:

UNIDADES 1 y 2: FRACCIONES Y DECIMALES. POTENCIAS Y RAÍCES. NÚMEROS APROXIMADOS. 1º.- Ordena de menor a mayor las siguientes fracciones: UNIDADES y : FRACCIONES Y DECIMALES. POTENCIAS Y RAÍCES. NÚMEROS APROXIMADOS. º.- Ordena de menor a mayor las siguientes fracciones: ; 6 5 7 4 ; 5 4 ; ; ; 8 6 9 º.- Efectúa las siguientes operaciones y

Más detalles

Ecuaciones de primer grado

Ecuaciones de primer grado Matemáticas Unidad 16 Ecuaciones de primer grado Objetivos Resolver problemas que impliquen el planteamiento y la resolución de ecuaciones de primer grado de la forma x + a = b; ax = b; ax + b = c, utilizando

Más detalles

Profesorado de Nivel Medio y Superior en Biología Matemática - 1º Cuatrimestre Año 2013 FUNCIÓN CUADRÁTICA

Profesorado de Nivel Medio y Superior en Biología Matemática - 1º Cuatrimestre Año 2013 FUNCIÓN CUADRÁTICA Matemática - º Cuatrimestre Año 0 FUNCIÓN CUADRÁTICA Hemos definido anteriormente la función lineal como una función f: R R de la forma f()a+b con a R y b R, que se representa en el plano mediante una

Más detalles

(Apuntes en revisión para orientar el aprendizaje) INTEGRALES IMPROPIAS

(Apuntes en revisión para orientar el aprendizaje) INTEGRALES IMPROPIAS (Apuntes en revisión para orientar el aprendizaje) INTEGRALES IMPROPIAS En integración se pide que la función sea continua en el intervalo considerado que además éste sea finito. En este tema se pretende

Más detalles

Tema 3. Polinomios y fracciones algebraicas

Tema 3. Polinomios y fracciones algebraicas Tema. Polinomios y fracciones algebraicas. Monomios.. Definiciones.. Operaciones con monomios. Polinomios.. Definiciones.. Operaciones con polinomios. Factorización de un polinomio.. Teorema del resto.

Más detalles

Del mismo modo, si el coche empieza a descender por una colina, todavía se puede determinar la pendiente.

Del mismo modo, si el coche empieza a descender por una colina, todavía se puede determinar la pendiente. FUNCIÓN AFÍN. PENDIENTE DE UNA RECTA Suponga que tiene un avión de juguete sobre el despegue, que se eleva 5 pies por cada 6 metros que recorre a lo largo de la horizontal. Cuál sería la pendiente de su

Más detalles

FUNCIONES EXPONENCIALES y LOGARITMICAS FUNCIONES EXPONENCIALES

FUNCIONES EXPONENCIALES y LOGARITMICAS FUNCIONES EXPONENCIALES Ingeniería en Sistemas de Información 01 FUNCIONES EXPONENCIALES LOGARITMICAS La función eponencial FUNCIONES EXPONENCIALES La función eponencial es de la forma, siendo a un número real positivo. El dominio

Más detalles

UNIDAD DE APRENDIZAJE II

UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE II NÚMEROS RACIONALES Jerarquía de Operaciones En matemáticas una operación es una acción realizada sobre un número (en el caso de la raíz y potencia) o donde se involucran dos números

Más detalles

Conjunto de Números Racionales.

Conjunto de Números Racionales. Conjunto de Números Racionales. El conjunto de los números racionales está formado por: el conjunto de los números enteros (-2, -1, 0, 1, 2, ) y los números fraccionarios y se representan con una Q. Números

Más detalles

PROBLEMAS DE DIAMANTE 2.1.1

PROBLEMAS DE DIAMANTE 2.1.1 PROBLEMAS DE DIAMANTE 2.1.1 En cada Problema de diamante, el producto de los dos números a los lados (izquierda y derecha) es el número arriba y la suma es el número de abajo. producto ab Los Problemas

Más detalles
Sitemap